Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37910294

RESUMO

Cancer is a major public health concern because it is one of the main causes of morbidity and mortality worldwide. As a result, numerous studies have reported the development of new therapeutic compounds with the aim of selectively treating cancer while having little negative influence on healthy cells. In this context, earthworm coelomic fluid has been acknowledged as a rich source of several bioactive substances that may exhibit promising anticancer activity. Therefore, the objective of the present review is to evaluate the findings of the reported studies exploring the antitumor effects of coelomic fluid in the context of its possible utilization as a natural therapeutic agent to cure different types of cancer. The possible mechanisms underlying the coelomic fluid's anticancerous potential as well as the possibility for future development of cutting-edge therapeutic agents utilizing coelomic fluid-derived natural bioactive compounds to treat cancer disorders have been discussed along with future challenges. In addition, the feasibility of encapsulation of bioactive compounds derived from coelomic fluid with nanomaterials that could be further explored to attain more effective anticancer competence is discussed.

2.
Saudi Pharm J ; 32(3): 101984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38384476

RESUMO

Current research focuses on explicitly developing and evaluating nanostructured lipidic carriers (NLCs) for the chemotherapeutic drug Ribociclib (RCB) via the topical route to surmount the inherent bioavailability shortcomings. The absolute oral bioavailability has not been determined, but using a physiologically based pharmacokinetic model it was predicted that 65.8 % of the standard dose of RCB (600 mg) would be absorbed mainly in the small intestine. RCB-NLCs were produced using the solvent evaporation method, and Box-Behnken Design (BBD) was employed to optimize composition. The prepared NLCs had an average PS of 79.29 ± 3.53 nm, PDI of 0.242 ± 0.021, and a %EE of 86.07 ± 3.14. The TEM analysis disclosed the spherical form and non-aggregative nature of the NLCs. The outcomes of an in-vitro release investigation presented cumulative drug release of 84.97 ± 3.37 % in 24 h, significantly higher than that from the RCB suspension (RCB-SUS). Ex-vivo skin permeation investigations on rodent (Swiss albino mice) revealed that RCB-NLCs have 1.91 times increases in skin permeability comparable to RCB-SUS. Compared to RCB-SUS, RCB-NLCs were able to penetrate deeper into the epidermis membrane than RCB-SUS as per the findings of confocal microscopy. In dermatokinetic study, higher amount of RCB was maintained in both the layers of mice's skin when treated with RCB-NLCs gel comparable to the RCB-SUS gel preparation. The in-vitro, ex-vivo, CLSM, and dermatokinetics data demonstrated a significant possibility for this novel RCB formulation to be effective against skin cancer.

3.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771021

RESUMO

The polar fractions of the Juniperus species are rich in bioflavonoid contents. Phytochemical study of the polar fraction of Juniperus sabina aerial parts resulted in the isolation of cupressuflavone (CPF) as the major component in addition to another two bioflavonoids, amentoflavone and robustaflavone. Biflavonoids have various biological activities, such as antioxidant, anti-inflammatory, antibacterial, antiviral, hypoglycemic, neuroprotective, and antipsychotic effects. Previous studies have shown that the metabolism and elimination of biflavonoids in rats are fast, and their oral bioavailability is very low. One of the methods to improve the bioavailability of drugs is to alter the route of administration. Recently, nose-to-brain drug delivery has emerged as a reliable method to bypass the blood-brain barrier and treat neurological disorders. To find the most effective CPF formulation for reaching the brain, three different CPF formulations (A, B and C) were prepared as self-emulsifying drug delivery systems (SEDDS). The formulations were administered via the intranasal (IN) route and their effect on the spontaneous motor activity in addition to motor coordination and balance of rats was observed using the activity cage and rotarod, respectively. Moreover, pharmacokinetic investigation was used to determine the blood concentrations of the best formulation after 12 h. of the IN dose. The results showed that formulations B and C, but not A, decreased the locomotor activity and balance of rats. Formula C at IN dose of 5 mg/kg expressed the strongest effect on the tested animals.


Assuntos
Biflavonoides , Juniperus , Ratos , Animais , Juniperus/química , Biflavonoides/farmacologia , Biflavonoides/metabolismo , Solubilidade , Sistemas de Liberação de Medicamentos/métodos , Encéfalo/metabolismo , Administração Intranasal , Atividade Motora , Disponibilidade Biológica
4.
Saudi Pharm J ; 31(9): 101734, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37649675

RESUMO

Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, ex vivo permeation, and in vivo dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged in vitro drug release up to 12 h. Most importantly, ex-vivo skin deposition studies and in vivo dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC0-10h 1124.5 ± 87.9 µg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 µg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.

5.
AAPS PharmSciTech ; 23(8): 305, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401127

RESUMO

Acyclovir a widely used drug in the treatment of herpes simplex virus (HSV) infections and lidocaine a local anesthetic were combined in a topical gel formulation. The topical gel with Transcutol P (TP) or N-methyl 2-pyrrolidone (NMP) was prepared and tested for in vitro skin permeation across the intact and microneedle-treated human cadaver skin. The topical gels containing 5% each of acyclovir and lidocaine showed optimal pH, spreadability, and 100% drug release. The transdermal flux and skin retention of the gels were significantly higher compared to Generic 5% acyclovir ointment (Zovirax) (p < 0.001), and 5% lidocaine gel (numb gel) (p < 0.05). As expected, topical gels showed a very high increase in the skin permeation across microporated skin versus intact skin. In viral infections, skin is inflamed, and barrier integrity may be disrupted. The results of the present study are significant because the co-delivery formulation showed a very high increase in the skin permeation across intact and microporated skin (versus respective commercial formulations). The results of this study demonstrate enhanced co-delivery of acyclovir and lidocaine in a topical formulation across skin (intact or barrier compromised) for the treatment of herpes virus infections.


Assuntos
Aciclovir , Lidocaína , Humanos , Pele , Administração Cutânea , Géis
6.
Saudi Pharm J ; 30(7): 879-905, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35645588

RESUMO

The SARS-CoV-2 (COVID 19) paroxysm is a dominant health exigency that caused significant distress, affecting physical and mental health. Increased mortality, a stressed healthcare system, financial crisis, isolation, and new living and working styles enhanced societal commiseration leading to poor health outcomes. Though people try to maintain good physical health but unfortunately the mental affliction is still ignored. Poor psychological health has emerged as a burgeoning social issue and demands attention. Henceforth, the fundamental objective of this review article is to collate information about COVID-linked physical and psychological agony in diverse population groups with related symptoms and accessible diagnosis techniques. Recent studies have unraveled the fragile mental states of people who have either contracted COVID 19 or had near and dear ones falling prey to it. The impact of the epidemic on the human mind both in short and long-term, with possible risk and preventive factors together with suggested solutions for maintaining good health have also been discussed here. It also enlists the available medications, vaccines and investigational research in the form of patents and clinical trials. This article can be taken as an updated information sheet for COVID 19, accompanied by its management techniques with special emphasis on coping strategies for mental health. Further, it may also assist the policymakers to devise approaches that could enable the public to overcome the pandemic-driven adversity not only in the given situation but also futuristically.

7.
Saudi Pharm J ; 30(6): 726-734, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812154

RESUMO

Abemaciclib (AC) is a novel, orally available drug molecule approved for the treatment of breast cancer. Due to its low bioavailability, its administration frequency is two to three times a day that can decrease patient compliance. Sustained release formulation are needed for prolong the action and to reduce the adverse effects. The aim of current study was to develop sustained release NSs of AC. Nanosponges (NSs) was prepared by emulsion-solvent diffusion method using ethyl-cellulose (EC) and Kolliphor P-188 (KP-188) as sustained-release polymer and surfactant, respectively. Effects of varying surfactant concentration and drug: polymer proportions on the particle size (PS), polydispersity index (PDI), zeta potential (ζP), entrapment efficiency (%EE), and drug loading (%DL) were investigated. The results of AC loaded NSs (ACN1-ACN5) exhibited PS (366.3-842.2 nm), PDI (0.448-0.853), ζP (-8.21 to -19.7 mV), %EE (48.45-79.36%) and %DL (7.69-19.17%), respectively. Moreover, ACN2 showed sustained release of Abemaciclib (77.12 ± 2.54%) in 24 h Higuchi matrix as best fit kinetics model. MTT assay signified ACN2 as potentials cytotoxic nanocarrier against MCF-7 and MDA-MB-231 human breast cancer cells. Further, ACN2 displayed drug release property without variation in the % release after exposing the product at 25 °C, 5 °C, and 45 °C storage conditions for six months. This investigation proved that the developed NSs would be an efficient carrier to sustain the release of AC in order to improve efficacy against breast cancer.

8.
Mar Drugs ; 19(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436306

RESUMO

The objective of this work was to develop sustained-release Ca-alginate beads of apigenin using sodium alginate, a natural polysaccharide. Six batches were prepared by applying the ionotropic gelation technique, wherein calcium chloride was used as a crosslinking agent. The beads were evaluated for particle size, drug loading, percentage yield, and in vitro drug release. Particle size was found to decrease, and drug entrapment efficiency was enhanced with an increase in the polymer concentration. The dissolution study showed sustained drug release from the apigenin-loaded alginate beads with an increase in the polymer proportion. Based on the dissolution profiles, BD6 formulation was optimized and characterized for FTIR, DSC, XRD, and SEM, results of which indicated successful development of apigenin-loaded Ca alginate beads. MTT assay demonstrated a potential anticancer effect against the breast cancer MCF-7 cell lines. The antimicrobial activity exhibited effective inhibition in the bacterial and fungal growth rate. The DPPH measurement revealed that the formulation had substantial antioxidant activity, with EC50 value slightly lowered compared to pure apigenin. A stability study demonstrated that the BD6 was stable with similar (f2) drug release profiles in harsh condition. In conclusion, alginate-based beads could be used for sustaining the drug release of poorly water-soluble apigenin while also improving in vitro antitumor, antimicrobial, and antioxidant activity.


Assuntos
Alginatos/química , Apigenina/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Apigenina/química , Organismos Aquáticos , Compostos de Bifenilo , Preparações de Ação Retardada , Feminino , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Células MCF-7/efeitos dos fármacos , Tamanho da Partícula , Fitoterapia , Picratos
9.
Drug Dev Ind Pharm ; 47(7): 1112-1120, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34551665

RESUMO

OBJECTIVE: The aim of the current investigation was to develop poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) to sustain the brigatinib (BTB) release for prolong time period and to examine the antitumor effect of the optimized NPs. SIGNIFICANCE: Optimized PLGA-based NPs of BTB could be potentially used as a promising nanocarrier for the treatment of non-small cell lung cancer. METHODS: BTB-loaded NPs were fabricated with core-shell of PLGA by solvent evaporation technique using different proportions of PLGA polymer and poly-vinyl alcohol (PVA) stabilizer. The prepared NPs were evaluated for particle characterizations; size, polydispersity index (PDI), zeta-potential, entrapment efficiency (EE), and drug loading (DL), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction studies. The optimized NPs (BN5) were further evaluated for morphology, stability, and cytotoxicity studies against A549 cell-lines. RESULTS: Among the nine different NPs formulae (BN1-BN9), BN5 was optimized with composition of BTB (30 mg), PLGA (75 mg), PVA (0.55% w/v), represents an average particle size of (267.1 ± 1.01 nm), PDI (0.101 ± 0.007), and zeta potential (-42.1 ± 0.75 mV), high EE (66.83 ± 0.06%), and DL (6.17 ± 0.69%). SEM image of selected NPs was spherical with smooth surface. In vitro drug release profile in phosphate buffers (pH 5 and pH 7.4) showed a biphasic release with initial burst phase followed by sustained release for prolong time. Furthermore, optimized NPs (BN5) exhibited excellent cytotoxic activity against A549 cell-lines with IC50 value of 5.25 ± 0.23 µg/mL. CONCLUSION: The overall results suggest that BTB-loaded PLGA NPs could be a potential nanocarrier for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Portadores de Fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organofosforados , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pirimidinas
10.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202080

RESUMO

Alveolar macrophages are the first line of defense against intruding pathogens and play a critical role in cancer immunology. The Toll-like receptor (TLR) family mediates an important role in recognizing and mounting an immune response against intruding microbes. TLR-9 is a member of the intracellular TLR family, which recognizes unmethylated CG motifs from the prokaryotic genome. Upon its activation, TLR-9 triggers downstream of the MyD-88-dependent transcriptional activation of NF-κB, and subsequently results in abundant inflammatory cytokines expression that induces a profound inflammatory milieu. The present exploratory investigation aimed at elucidating the potency of schizophyllan for entrapping ODN 1826 (SPG-ODN 1826)-mediated stimulation of TLR-9 in provoking an inflammatory-type response in murine alveolar macrophages. Schizophyllan (SPG), a representative of the ß-glucan family, was used in the present study as a nanovehicle for endosomal trafficking of CpG ODN 1826. TEM analysis of SPG-ODN 1826 nanovehicles revealed that the prepared nanovehicles are spherical and have an average size of about 100 nm. Interestingly, SPG-ODN 1826 nanovehicles were competent in delivering their therapeutic payload within endosomes of murine alveolar macrophage (J774A.1) cells. Exposure of these nanovehicles within LPS stimulated J774A.1, resulted in a significant provocation of reactive oxygen species (ROS) (p < 0.01) in comparison to CpG ODN 1826 alone. Moreover, the formulated nanovehicles succeeded in generating a profound Th1-based cytokine profile constituted by enhanced expression of IFN-γ (p < 0.001) and IL-1ß (p < 0.001) inflammatory cytokines. These findings clearly indicated the immunostimulatory potential of SPG-ODN 1826 nanovehicles for inducing the Th1-type phenotype, which would certainly assist in skewing M2 phenotype into the much-desired M1 type during lung cancer.


Assuntos
Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Nanoestruturas/química , Oligodesoxirribonucleotídeos/química , Sizofirano/química , Receptor Toll-Like 9/agonistas , Animais , Sobrevivência Celular , Citocinas/metabolismo , Endossomos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/imunologia , Camundongos , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Tamanho da Partícula
11.
Molecules ; 27(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011397

RESUMO

Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (-36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer-Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.


Assuntos
Azetidinas/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipossomos/química , Nanopartículas/química , Polímeros/química , Purinas/farmacocinética , Pirazóis/farmacocinética , Sulfonamidas/farmacocinética , Administração Oral , Animais , Azetidinas/administração & dosagem , Azetidinas/química , Disponibilidade Biológica , Masculino , Purinas/administração & dosagem , Purinas/química , Pirazóis/administração & dosagem , Pirazóis/química , Ratos , Ratos Wistar , Sulfonamidas/administração & dosagem , Sulfonamidas/química
12.
Saudi Pharm J ; 29(5): 467-477, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34135673

RESUMO

In the current study, four formulae (BNS1-BNS4) of butenafine (BTF) loaded nanosponges (NS) were fabricated by solvent emulsification technology, using different concentration of ethyl cellulose (EC) and polyvinyl alcohol (PVA) as a rate retarding polymer and surfactant, respectively. Prepared NS were characterized for particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). Nanocarrier BNS3 was optimized based on the particle characterizations and drug encapsulation. It was further evaluated for physicochemical characterizations; FTIR, DSC, XRD and SEM. Selected NS BNS3 composed of BTF (100 mg), EC (200 mg) and 0.3% of PVA showed, PS (543 ± 0.67 nm), PDI (0.330 ± 0.02), ZP (-33.8 ± 0.89 mV), %EE (71.3 ± 0.34%) and %DL (22.8 ± 0.67%), respectively. Fabricated NS also revealed; polymer-drug compatibility, drug-encapsulation, non-crystalline state of the drug in the spherical NS as per the physicochemical evaluations. Optimized NS (BNS3) with equivalent amount of (1%, w/w or w/v) BTF was incorporated into the (1%, w/w or w/v) carbopol gel. BTF loaded NS based gel was then evaluated for viscosity, spreadability, flux, drug diffusion, antifungal, stability and skin irritation studies. BNS3 based topical gels exhibited a flux rate of 0.18 (mg/cm2.h), drug diffusion of 89.90 ± 0.87% in 24 h with Higuchi model following anomalous non-Fickian drug release. The BNS3 based-gel could be effective against pathogenic fungal strains.

13.
J Thromb Thrombolysis ; 49(3): 404-412, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31898270

RESUMO

The purpose of the currents study was to enhance bioavailability of rivaroxaban (RXB) and reduce the food effect. RXB loaded PLGA nanoparticles (RXB-PLGA-NPs) were prepared by emulsion solvent evaporation method and optimized using central composite design (CDD). The optimized RXB-PLGA-NPs (F8) with composition, PLGA (125 mg), PVA (0.5%w/w) and RXB (20 mg) was found optimum with particle size (496 ± 8.5 nm), PDI (0.607), ZP (- 18.41 ± 3.14 mV), %EE (87.9 ± 8.6) and %DL (9.5 ± 1.6). The optimized NPs (F8) was further evaluated in vitro for DSC, FTIR, SEM and in vitro release studies. A comparative pharmacokinetic studies with commercial tablet (XARELTO®) were conducted on fasted and fed state rats. Compared to commercial tablet (XARELTO®), the RXB-PLGA-NPs (F8) exhibited a significant enhancement of bioavailability in both fasted and fed state. In addition, the bioavailability of RXB from NPs (F8) was found unaffected in the presence of food.


Assuntos
Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Rivaroxabana , Administração Oral , Animais , Disponibilidade Biológica , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Interações Alimento-Droga , Masculino , Nanopartículas/química , Nanopartículas/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ratos , Ratos Wistar , Rivaroxabana/química , Rivaroxabana/farmacocinética , Rivaroxabana/farmacologia
14.
AAPS PharmSciTech ; 21(8): 304, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33150503

RESUMO

Hispolon is a small molecular weight polyphenol that has antioxidant, anti-inflammatory, and anti-proliferative activities. Our recent study has demonstrated hispolon as a potent apoptosis inducer in melanoma cell lines. Doxorubicin is a broad spectrum first-line treatment for various kinds of cancers. In this study, co-delivery of doxorubicin and hispolon using a liposomal system in B16BL6 melanoma cell lines for synergistic cytotoxic effects was investigated. Liposomes were prepared using a lipid film hydration method and loaded with doxorubicin or hispolon. The formulations were characterized for particle size distribution, release profile, and encapsulation efficiency (EE). In addition, in vitro cytotoxicity, in vitro cell apoptosis, and cellular uptake were evaluated. Liposomes exhibited small particle size (mean diameter ~ 100 nm) and narrow size distribution (polydispersity index (< 0.2) and high drug EE% (> 90%). The release from liposomes showed slower release compared to free drug solution as an additional time required for the release of drug from the liposome lipid bilayer. Liposome loaded with doxorubicin or hispolon exhibited significantly higher cytotoxicity against B16BL6 melanoma cells as compared to doxorubicin solution or hispolon solution. Likewise, co-delivery of hispolon and doxorubicin liposomes showed two-fold and three-fold higher cytotoxicity, as compared to hispolon liposomes or doxorubicin liposomes, respectively. In addition, co-delivery of doxorubicin and hispolon in liposomes enhanced apoptosis more than the individual drugs in the liposome formulation. In conclusion, the co-delivery of hispolon and doxorubicin could be a promising therapeutic approach to improve clinical outcomes against melanoma.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Catecóis/administração & dosagem , Doxorrubicina/análogos & derivados , Melanoma/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Humanos , Bicamadas Lipídicas , Melanoma/patologia , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem
15.
Saudi Pharm J ; 28(12): 1817-1826, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424269

RESUMO

Tadalafil (TDL) is a phosphodiesterase-5 inhibitor (PDE5I), indicated for erectile dysfunction (ED). However, TDL exhibits poor aqueous solubility and dissolution rate, which may limit its application. This study aims to prepare amorphous solid dispersion (ASD) by spray-drying, using glycyrrhizin-a natural drug carrier. Particle and physicochemical characterizations were performed by particle size, polydispersity index measurement, yield, drug content estimation, Fourier Transformed Infrared (FTIR) spectroscopy, Differential scanning calorimetry (DSC), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and dissolution study. In order to evaluate the aphrodisiac activity of the prepared ASD, sexual behavior study was performed in male rats. It is further considered for the stability study. Our results revealed that TDL-GLZ spray-dried dispersion was a successful drug-carrier binary mixture. XRD and SEM showed that ASD of TDL with GLZ presented in the amorphous state and dented-spherical shape, unlike the drug indicating crystalline and spiked shaped. The optimized ASD3 formulation with particle size (1.92 µm), PDI (0.32), yield (97.78%) and drug content (85.00%) showed 4.07 folds' increase in dissolution rate compared to pure TDL. The results obtained from the in vivo study exhibit significantly improved aphrodisiac activity with ASD3. The stability study revealed that the prepared ASD3 did not show any remarkable changes in the dissolution and drug content for 1 month storage at room temperature.

16.
Molecules ; 24(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374890

RESUMO

Estimating the solubility and solution thermodynamics parameters of aliskiren hemifumarate (AHF) in three different room temperature ionic liquids (RTILs), Transcutol-HP (THP) and water are interesting as there is no solubility data available in the literature. In the current study, the solubility and solution thermodynamics of AHF in three different RTILs, THP and water at the temperature range from 298.2 to 318.2 K under air pressure 0.1 MP were evaluated. The solid phase evaluation by Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction (PXRD) indicated no conversion of AHF into polymorph. The mole fraction solubility of AHF was found to be highest in 1-hexyl-3-methylimidazolium hexafluorophosphate (HMMHFP) ionic liquid (7.46 × 10-2) at 318.2 K. The obtained solubility values of AHF was regressed by the Apelblat and van't Hoff models with overall root mean square deviations (RMSD) of 0.62% and 1.42%, respectively. The ideal solubility of AHF was higher compared to experimental solubility values at different temperatures. The lowest activity coefficient was found in HMMHFP, which confirmed highest molecular interaction between AHF-HMMHFP. The estimated thermodynamic parameters confirmed endothermic and entropy driven dissolution of AHF in different RTILs, THP, and water.


Assuntos
Amidas/química , Fumaratos/química , Líquidos Iônicos/química , Solventes/química , Termodinâmica , Etilenoglicóis/química , Solubilidade , Temperatura , Água/química , Difração de Raios X
17.
ACS Omega ; 9(25): 27300-27311, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947795

RESUMO

This study conducts a systematic investigation of the creation and optimization of a rutin-loaded transethosome intended for topical use. The formulation's characteristics were thoroughly assessed for vesicle size (160.45 ± 1.98 nm), polydispersity index (0.235 ± 0.067), and zeta potential (-22.89 mV), with an entrapment efficiency and drug loading of 89.99 ± 1.55% and 8.9 ± 2.11%, respectively, and found to have a spherical shape by the use of transmission electron microscopy. The conversion to a gel suitable for application on the skin was carried out. The drug release form Opt-RUT-TE formulation (73.61 ± 2.55%) was significantly higher than that of release form RUT-suspension (34.52 ± 1.19%). The drug that permeated the skin from Opt-RUT-TEG (935.25 ± 10.49 µg/cm2) was significantly higher than the permeability from RUT-Suspension gel (522.57 ± 6.79 µg/cm2). Notably, tape stripping analysis revealed that the Opt-RUT-TE gel effectively penetrated the skin layers, with a higher concentration observed in the epidermis-dermis than in the RUT-suspension gel. The transethosomal gel exhibited favorable characteristics, highlighting its capacity to efficiently permeate the skin and suppress the growth of microorganisms, and Opt-RUT-TEG showed a higher microorganism inhibition zone (Gram-positive bacteria) than that of RUT-suspension gel. The investigation highlights the significant therapeutic possibilities of rutin in a transethosomal gel formulation for treating dermatological diseases by improving skin permeability and exhibiting antibacterial effects.

18.
Front Med (Lausanne) ; 11: 1397648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841581

RESUMO

For cancer therapy, the focus is now on targeting the chemotherapy drugs to cancer cells without damaging other normal cells. The new materials based on bio-compatible magnetic carriers would be useful for targeted cancer therapy, however understanding their effectiveness should be done. This paper presents a comprehensive analysis of a dataset containing variables x(m), y(m), and U(m/s), where U represents velocity of blood through vessel containing ferrofluid. The effect of external magnetic field on the fluid flow is investigated using a hybrid modeling. The primary aim of this research endeavor was to construct precise and dependable predictive models for velocity, utilizing the provided input variables. Several base models, including K-nearest neighbors (KNN), decision tree (DT), and multilayer perceptron (MLP), were trained and evaluated. Additionally, an ensemble model called AdaBoost was implemented to further enhance the predictive performance. The hyper-parameter optimization technique, specifically the BAT optimization algorithm, was employed to fine-tune the models. The results obtained from the experiments demonstrated the effectiveness of the proposed approach. The combination of the AdaBoost algorithm and the decision tree model yielded a highly impressive score of 0.99783 in terms of R2, indicating a strong predictive performance. Additionally, the model exhibited a low error rate, as evidenced by the root mean square error (RMSE) of 5.2893 × 10-3. Similarly, the AdaBoost-KNN model exhibited a high score of 0.98524 using R2 metric, with an RMSE of 1.3291 × 10-2. Furthermore, the AdaBoost-MLP model obtained a satisfactory R2 score of 0.99603, accompanied by an RMSE of 7.1369 × 10-3.

19.
Int J Pharm X ; 7: 100240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577618

RESUMO

Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 23 full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q12h). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (-19.9 ± 2.1 mV), Q12h of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, ex-vivo skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, in vivo studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC0-12h of BIM-SLG was 888.05 ± 72.31 µg/mL.h, which was twice as high as that of naïve BIM gel (AUC0-12h 382.86 ± 41.12 µg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.

20.
ACS Omega ; 9(17): 19536-19547, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708263

RESUMO

Pediatric pulmonary hypertension is a serious syndrome with significant morbidity and mortality. Sildenafil is widely used off-label in pediatric patients with pulmonary arterial hypertension. In this study, bile salt-stabilized nanovesicles (bilosomes) were screened for their efficacy to enhance the transdermal delivery of the phosphodiesterase type 5 inhibitor, sildenafil citrate, in an attempt to augment its therapeutic efficacy in pediatric pulmonary hypertension. A response surface methodology was implemented for fabricating and optimizing a bilosomal formulation of sildenafil (SDF-BS). The optimized SDF-BS formulation was characterized in terms of its entrapment efficiency (EE), zeta potential, vesicle size, and in vitro release profile. The optimized formula was then loaded onto hydroxypropyl methyl cellulose (HPMC) hydrogel and assessed for skin permeation, in vivo pharmacokinetics, and pharmacodynamic studies. The optimized SDF-BS showed the following characteristic features; EE of 88.7 ± 1.1%, vesicle size of 185.0 + 9.2 nm, zeta potential of -20.4 ± 1.1 mV, and efficiently sustained SDF release for 12 h. Skin permeation study revealed a remarkable improvement in SDF penetration from bilosomal gel compared to plain SDF gel. In addition, pharmacokinetic results revealed that encapsulating SDF within bilosomal vesicles significantly enhanced its systemic bioavailability (∼3 folds), compared to SDF oral suspension. In addition, pharmacodynamic investigation revealed that, compared to plain SDF gel or oral drug suspension, SDF-BS gel applied topically triggered a significant elevation (p < 0.05) in cGMP serum levels, underscoring the superior therapeutic efficacy of SDF-BS gel. Conclusively, bilosomes can be viewed as a promising nanocarrier for transdermal delivery of SDF that would grant higher therapeutic efficiency while alleviating the limitations encountered with SDF oral administration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa