Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 4(8): e1000128, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18704168

RESUMO

Vaccinia virus (VACV), the prototype poxvirus, encodes numerous proteins that modulate the host response to infection. Two such proteins, B14 and A52, act inside infected cells to inhibit activation of NF-kappaB, thereby blocking the production of pro-inflammatory cytokines. We have solved the crystal structures of A52 and B14 at 1.9 A and 2.7 A resolution, respectively. Strikingly, both these proteins adopt a Bcl-2-like fold despite sharing no significant sequence similarity with other viral or cellular Bcl-2-like proteins. Unlike cellular and viral Bcl-2-like proteins described previously, A52 and B14 lack a surface groove for binding BH3 peptides from pro-apoptotic Bcl-2-like proteins and they do not modulate apoptosis. Structure-based phylogenetic analysis of 32 cellular and viral Bcl-2-like protein structures reveals that A52 and B14 are more closely related to each other and to VACV N1 and myxoma virus M11 than they are to other viral or cellular Bcl-2-like proteins. This suggests that a progenitor poxvirus acquired a gene encoding a Bcl-2-like protein and, over the course of evolution, gene duplication events have allowed the virus to exploit this Bcl-2 scaffold for interfering with distinct host signalling pathways.


Assuntos
Apoptose , Evolução Molecular , NF-kappa B/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Vaccinia virus/química , Proteínas Virais/química , Linhagem Celular , Cristalografia por Raios X , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Vacínia/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo
2.
Methods Mol Biol ; 498: 75-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18988019

RESUMO

In this chapter, protocols for the construction of expression vectors using In-Fusion PCR cloning are presented. The method enables vector and insert DNA sequences to be seamlessly joined in a ligation-independent reaction. This property of the In-Fusion process has been exploited in the design of a suite of multi-host compatible vectors for the expression of proteins with precisely engineered His-tags. Vector preparation, PCR amplification of the sequence to be cloned and the procedure for inserting the PCR product into the vector by In-Fusion are described.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos , Reação em Cadeia da Polimerase/métodos , Animais , Técnicas de Cultura de Células , Escherichia coli/genética , Glicerol/química , Histidina/química , Plasmídeos , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/genética , Transformação Genética
3.
Nucleic Acids Res ; 35(6): e45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17317681

RESUMO

This article describes the construction of a set of versatile expression vectors based on the In-Fusion cloning enzyme and their use for high-throughput cloning and expression screening. Modifications to commonly used vectors rendering them compatible with In-Fusion has produced a ligation-independent cloning system that is (1) insert sequence independent (2) capable of cloning large PCR fragments (3) efficient over a wide (20-fold) insert concentration range and (4) applicable to expression in multiple hosts. The system enables the precise engineering of (His(6)-) tagged constructs with no undesirable vector or restriction-site-derived amino acids added to the expressed protein. The use of a multiple host-enabled vector allows rapid screening in both E. coli and eukaryotic hosts (HEK293T cells and insect cell hosts, e.g. Sf9 cells). These high-throughput screening activities have prompted the development and validation of automated protocols for transfection of mammalian cells and Ni-NTA protein purification.


Assuntos
Clonagem Molecular/métodos , Proteínas Recombinantes de Fusão/biossíntese , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Escherichia coli/genética , Genes Virais , Vetores Genéticos/química , Humanos , Neisseria/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética
4.
Biotechnol Bioeng ; 101(6): 1115-22, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18781697

RESUMO

The baculovirus expression system is one of the most popular methods used for the production of recombinant proteins but has several complex steps which have proved inherently difficult to adapt to a multi-parallel process. We have developed a bacmid vector that does not require any form of selection pressure to separate recombinant virus from non-recombinant parental virus. The method relies on homologous recombination in insect cells between a transfer vector containing a gene to be expressed and a replication-deficient bacmid. The target gene replaces a bacterial replicon at the polyhedrin loci, simultaneously restoring a virus gene essential for replication. Therefore, only recombinant virus can replicate facilitating the rapid production of multiple recombinant viruses on automated platforms in a one-step procedure. Using this vector allowed us to automate the generation of multiple recombinant viruses with a robotic liquid handler and then rapidly screen infected insect cell supernatant for the presence of secreted proteins.


Assuntos
Baculoviridae/genética , Biotecnologia/métodos , Vetores Genéticos , Proteínas Recombinantes/genética , Animais , Linhagem Celular , Clonagem Molecular , Expressão Gênica , Insetos , Biologia Molecular/métodos , Recombinação Genética , Replicação Viral
5.
Artigo em Inglês | MEDLINE | ID: mdl-16754965

RESUMO

The P(II) signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P(II)-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P(II) protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P(II) protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 A. Comparison of the structure with those of other P(II) proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P(II) protein shares functions with GlnB/GlnK of enteric bacteria.


Assuntos
Neisseria meningitidis/química , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli , Estrutura Molecular , Nucleotidiltransferases , Conformação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais
6.
Structure ; 12(2): 341-53, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14962394

RESUMO

As part of a high-throughput structural analysis of SARS-coronavirus (SARS-CoV) proteins, we have solved the structure of the non-structural protein 9 (nsp9). This protein, encoded by ORF1a, has no designated function but is most likely involved with viral RNA synthesis. The protein comprises a single beta-barrel with a fold previously unseen in single domain proteins. The fold superficially resembles an OB-fold with a C-terminal extension and is related to both of the two subdomains of the SARS-CoV 3C-like protease (which belongs to the serine protease superfamily). nsp9 has, presumably, evolved from a protease. The crystal structure suggests that the protein is dimeric. This is confirmed by analytical ultracentrifugation and dynamic light scattering. We show that nsp9 binds RNA and interacts with nsp8, activities that may be essential for its function(s).


Assuntos
Modelos Moleculares , Proteínas de Ligação a RNA/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas Virais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Dados de Sequência Molecular , Ligação Proteica , RNA Viral/química , Homologia de Sequência de Aminoácidos , Ultracentrifugação
7.
BMC Struct Biol ; 5: 13, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16092953

RESUMO

BACKGROUND: The NMB0736 gene of Neisseria meningitidis serogroup B strain MC58 encodes the putative nitrogen regulatory protein, IIANtr (abbreviated to NM-IIANtr). The homologous protein present in Escherichia coli is implicated in the control of nitrogen assimilation. As part of a structural proteomics approach to the study of pathogenic Neisseria spp., we have selected this protein for structure determination by X-ray crystallography. RESULTS: The NM-IIANtr was over-expressed in E. coli and was shown to be partially mono-phosphorylated, as assessed by mass spectrometry of the purified protein. Crystals of un-phosphorylated protein were obtained and diffraction data collected to 2.5 A resolution. The structure of NM-IIANtr was solved by molecular replacement using the coordinates of the E. coli nitrogen regulatory protein IIAntr [PDB: 1A6J] as the starting model. The overall fold of the Neisseria enzyme shows a high degree of similarity to the IIANtr from E. coli, and the position of the phosphoryl acceptor histidine residue (H67) is conserved. The orientation of an adjacent arginine residue (R69) suggests that it may also be involved in coordinating the phosphate group. Comparison of the structure with that of E. coli IIAmtl complexed with HPr [PDB: 1J6T] indicates that NM-IIANtr binds in a similar way to the HPr-like enzyme in Neisseria. CONCLUSION: The structure of NM-IIANtr confirms its assignment as a homologue of the IIANtr proteins found in a range of other Gram-negative bacteria. We conclude that the NM- IIANtr protein functions as part of a phosphorylation cascade which, in contrast to E. coli, shares the upstream phosphotransfer protein with the sugar uptake phosphoenolpyruvate:sugar phosphotransferase system (PTS), but in common with E. coli has a distinct downstream effector mechanism.


Assuntos
Proteínas de Bactérias/química , Neisseria meningitidis/metabolismo , Nitrogênio/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Arginina/química , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Primers do DNA/química , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Histidina/química , Espectrometria de Massas , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Fosforilação , Reação em Cadeia da Polimerase , Conformação Proteica , Estrutura Terciária de Proteína , Proteômica/métodos
8.
J Gen Virol ; 88(Pt 8): 2228-2236, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17622627

RESUMO

We have determined the high resolution crystal structure of the methyltransferase domain of the NS5 polypeptide from the Murray Valley encephalitis virus. This domain is unusual in having both the N7 and 2'-O methyltransferase activity required for Cap 1 synthesis. We have also determined structures for complexes of this domain with nucleotides and cap analogues providing information on cap binding, based on which we suggest a model of how the sequential methylation of the N7 and 2'-O groups of the cap may be coordinated.


Assuntos
Vírus da Encefalite do Vale de Murray/enzimologia , Metiltransferases/química , Análogos de Capuz de RNA/metabolismo , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Antígeno Carcinoembrionário/metabolismo , Cristalização , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oligopeptídeos/metabolismo , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa