Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563069

RESUMO

Uncoupling of metabolism and circadian activity is associated with an increased risk of a wide spectrum of pathologies. Recently, insulin and the closely related insulin-like growth factor I (IGF-I) were shown to entrain feeding patterns with circadian rhythms. Both hormones act centrally to modulate peripheral glucose metabolism; however, whereas central targets of insulin actions are intensely scrutinized, those mediating the actions of IGF-I remain less defined. We recently showed that IGF-I targets orexin neurons in the lateral hypothalamus, and now we evaluated whether IGF-I modulates orexin neurons to align circadian rhythms with metabolism. Mice with disrupted IGF-IR activity in orexin neurons (Firoc mice) showed sexually dimorphic alterations in daily glucose rhythms and feeding activity patterns which preceded the appearance of metabolic disturbances. Thus, Firoc males developed hyperglycemia and glucose intolerance, while females developed obesity. Since IGF-I directly modulates orexin levels and hepatic expression of KLF genes involved in circadian and metabolic entrainment in an orexin-dependent manner, it seems that IGF-I entrains metabolism and circadian rhythms by modulating the activity of orexin neurons.


Assuntos
Ritmo Circadiano , Hipotálamo , Fator de Crescimento Insulin-Like I , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Feminino , Hipotálamo/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Orexinas/metabolismo
2.
J Cereb Blood Flow Metab ; : 271678X231217669, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017004

RESUMO

Increased neurotrophic support, including insulin-like growth factor I (IGF-I), is an important aspect of the adaptive response to ischemic insult. However, recent findings indicate that the IGF-I receptor (IGF-IR) in neurons plays a detrimental role in the response to stroke. Thus, we investigated the role of astrocytic IGF-IR on ischemic insults using tamoxifen-regulated Cre deletion of IGF-IR in glial fibrillary acidic protein (GFAP) astrocytes, a major cellular component in the response to injury. Ablation of IGF-IR in astrocytes (GFAP-IGF-IR KO mice) resulted in larger ischemic lesions, greater blood-brain-barrier disruption and more deteriorated sensorimotor coordination. RNAseq detected increases in inflammatory, cell adhesion and angiogenic pathways, while the expression of various classical biomarkers of response to ischemic lesion were significantly increased at the lesion site compared to control littermates. While serum IGF-I levels after injury were decreased in both control and GFAP-IR KO mice, brain IGF-I mRNA expression show larger increases in the latter. Further, greater damage was also accompanied by altered glial reactivity as reflected by changes in the morphology of GFAP astrocytes, and relative abundance of ionized calcium binding adaptor molecule 1 (Iba 1) microglia. These results suggest a protective role for astrocytic IGF-IR in the response to ischemic injury.

3.
Geroscience ; 44(4): 2243-2257, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604612

RESUMO

Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.


Assuntos
Região Hipotalâmica Lateral , Fator de Crescimento Insulin-Like I , Animais , Camundongos , Orexinas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Região Hipotalâmica Lateral/metabolismo , Sono/fisiologia , Neurônios/metabolismo
4.
Aging (Albany NY) ; 11(1): 174-184, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30636168

RESUMO

We recently reported that exercise increases resilience to stress in young female mice. Underlying mechanisms include an interaction of the ovarian hormone estradiol (E2) with insulin-like growth factor I (IGF-I), and an increase in the hippocampal levels of the latter. Since changes in mood regulation during aging may contribute to increasing incidence of affective disorders at older age, we determined whether the protective actions of exercise are maintained at later ages. We found that during peri-menopause, exercise no longer improves resilience to stress and even becomes anxiogenic. Furthermore, the interaction seen in young females between the E2 α receptor (ERα) and the IGF-I receptor (IGF-IR) is lost at middle-age. In addition, E2 no longer induces IGF-I uptake by brain endothelial cells, and consequently, hippocampal IGF-I levels do not increase. Treatment of middle-aged females with an ERα agonist did not recover the positive actions of exercise. Collectively, these data indicate that the loss of action of exercise during peri-menopause may be related to a loss of the interaction of IGF-IR with ERα in brain endothelial cells that cannot be ameliorated by estrogen therapy. Changes in regulation of mood by physical activity may contribute to increased appearance of affective disorders along age.


Assuntos
Afeto/fisiologia , Envelhecimento/fisiologia , Células Endoteliais/metabolismo , Estradiol/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Encéfalo/irrigação sanguínea , Óleo de Milho/farmacologia , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Homeostase , Camundongos , Condicionamento Físico Animal , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa