RESUMO
Malachite green (MG) dye is a common environmental pollutant that threatens human health and the integrity of the Earth's ecosystem. The aim of this study was to investigate the potential biodegradation of MG dye by actinomycetes species isolated from planted soil near an industrial water effluent in Cairo, Egypt. The Streptomyces isolate St 45 was selected according to its high efficiency for laccase production. It was identified as S. exfoliatus based on phenotype and 16S rRNA molecular analysis and was deposited in the NCBI GenBank with the gene accession number OL720220. Its growth kinetics were studied during an incubation time of 144 h, during which the growth rate was 0.4232 (µ/h), the duplication time (td) was 1.64 d, and multiplication rate (MR) was 0.61 h, with an MG decolorization value of 96% after 120 h of incubation at 25 °C. Eleven physical and nutritional factors (mannitol, frying oil waste, MgSO4, NH4NO3, NH4Cl, dye concentration, pH, agitation, temperature, inoculum size, and incubation time) were screened for significance in the biodegradation of MG by S. exfoliatus using PBD. Out of the eleven factors screened in PBD, five (dye concentration, frying oil waste, MgSO4, inoculum size, and pH) were shown to be significant in the decolorization process. Central composite design (CCD) was applied to optimize the biodegradation of MG. Maximum decolorization was attained using the following optimal conditions: food oil waste, 7.5 mL/L; MgSO4, 0.35 g/L; dye concentration, 0.04 g/L; pH, 4.0; and inoculum size, 12.5%. The products from the degradation of MG by S. exfoliatus were characterized using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of several compounds, including leuco-malachite green, di(tert-butyl)(2-phenylethoxy) silane, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,4-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,2-benzenedicarboxylic acid, di-n-octyl phthalate, and 1,2-benzenedicarboxylic acid, dioctyl ester. Moreover, the phytotoxicity, microbial toxicity, and cytotoxicity tests confirmed that the byproducts of MG degradation were not toxic to plants, microbes, or human cells. The results of this work implicate S. exfoliatus as a novel strain for MG biodegradation in different environments.
Assuntos
Poluentes Ambientais , Streptomyces , Biodegradação Ambiental , Corantes/química , Ecossistema , Ésteres , Humanos , Lacase , Manitol , RNA Ribossômico 16S/genética , Corantes de Rosanilina , Silanos , Solo , Streptomyces/genética , Streptomyces/metabolismo , ÁguaRESUMO
Soil contamination with microplastics (MPs) is a persistent threat to crop production worldwide. With a wide range of MP types, including polystyrene (PS), polyvinyl chloride (PVC) and polyethylene (PE), contaminating our environment, it is important to understand their impact on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC and PE) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and non-enzymatic), gene expression, proline metabolism, the AsA-GSH cycle and cellular fractionation and nutritional status, in different parts of rice (Oryza sativa L.) seedlings, which were also exposed to plant growth promoting rhizobacteria (PGPR), i.e. Bacillus mycoides PM35, i.e. 20 µL. The research outcomes indicated that the different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments and gas exchange attributes. However, MP stress also induced oxidative stress in the roots and shoots of the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL) which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the fractionations of cellular components was observed. Although the application of B. mycoides PM35 showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased oxidative stress. In addition, the application of B. mycoides PM35 enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of MP contamination in agricultural soils.
Assuntos
Microplásticos , Oryza , Poluentes do Solo , Poluentes do Solo/metabolismo , Bacillus , Estresse OxidativoRESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening infections. Zinc oxide is well known as an effective antibacterial drug against many bacterial strains. We investigated the performance of zinc oxide nanorods synthesized by Albmiun as a biotemplate as an antibacterial drug in this study; the fabrication of zinc oxide nanorods was synthesized by sol-gel methods. We performed physicochemical characterization of zinc oxide nanorods by physiochemical techniques such as FTIR spectroscopy, X-ray diffraction, and TEM and investigation of their antimicrobial toxicity efficiency by MIC, ATPase activity assay, anti-biofilm activity, and kill time assays, as well as the mecA, mecR1, blaR1, blaZ, and biofilm genes (ica A, ica D, and fnb A) by using a quantitative RT-PCR assay and the penicillin-binding protein 2a (PBP2a) level of MRSA by using a Western blot. The data confirmed the fabrication of rod-shaped zinc oxide nanorods with a diameter in the range of 50 nm, which emphasized the formation of zinc oxide nanoparticles with regular shapes. The results show that zinc oxide nanorods inhibited methicillin-resistant S. aureus effectively. The MIC value was 23 µg/mL. The time kill of ZnO-NRs against MRSA was achieved after 2 h of incubation at 4MIC (92 µg/mL) and after 3 h of incubation at 2MIC (46 µg/mL), respectively. The lowest concentration of zinc oxide nanorods with over 75% biofilm killing in all strains tested was 32 µg/mL. Also, we examined the influence of the zinc oxide nanorods on MRSA by analyzing mecA, mecR1, blaR1, and blaZ by using a quantitative RT-PCR assay. The data obtained revealed that the presence of 2× MIC (46 µg/mL) of ZnO-NRs reduced the transcriptional levels of blaZ, blaR1, mecA, and mecR1 by 3.4-fold, 3.6-fold, 4-fold, and 3.8-fold, respectively. Furthermore, the gene expression of biofilm encoding genes (ica A, ica B, ica D, and fnb A) was tested using quantitative real-time reverse transcriptase-polymerase chain reaction (rt-PCR). The results showed that the presence of 2× MIC (46 µg/mL) of ZnO-NRs reduced the transcriptional levels of ica A, ica B, ica D, and fnb A. Also, the PBP2a level was markedly reduced after treatment with ZnO-NRs.
RESUMO
Nutrient deficiency in wild plant species, including quinoa (Chenopodium quinoa Willd), can be overcome by applying mineral-solubilizing bacteria. Quinoa is a gluten-free, nutritious food crop with unique protein content. The present study aimed to characterize mineral-solubilizing rhizobacterial strains and to evaluate their plant growth-promoting potential in quinoa seedlings. More than sixty rhizobacterial strains were isolated from the quinoa rhizosphere and found eighteen strains to be strong phosphate solubilizers. Most of these bacterial strains showed zinc solubilization, and more than 80% of strains could solubilize manganese. The selected strains were identified as Bacillus altitudinis Cq-3, Pseudomonas flexibilis Cq-32, Bacillus pumilus Cq-35, Pseudomonas furukawaii Cq-40, Pontibacter lucknowensis Cq-48, and Ensifer sp. Cq-51 through 16S rRNA partial gene sequencing. Mainly, these strains showed the production of organic acids, including malic, gluconic, tartaric, ascorbic, lactic, and oxalic acids in insoluble phosphorus amended broth. All strains showed production of gluconic acids, while half of the strains could produce malic, ascorbic, lactic, and oxalic acids. These strains demonstrated the production of indole-3-acetic acid in the presence as well as in the absence of L-tryptophan. The bacterial strains also demonstrated their ability to promote growth and yield attributes, including shoot length, root length, leave numbers, root and shoot dry biomass, spike length, and spikes numbers of quinoa in pots and field trials. Increased physiological attributes, including relative humidity, quantum flux, diffusive resistance, and transpiration rate, were observed due to inoculation with mineral solubilizing bacterial strains under field conditions. P. lucknowensis Cq-48, followed by P. flexibilis Cq-32, and P. furukawaii Cq-40 showed promising results to promote growth, yield, and physiological attributes. The multi-traits characteristics and plant growth-promoting ability in the tested bacterial strains could provide an opportunity for formulating biofertilizers that could promote wild quinoa growth and physiology.
RESUMO
The oxidative stress facing fish during intensive production brings about diseases and mortalities that negatively influence their performance. Along with that, the increased awareness of omega-3 polyunsaturated fatty acids (omega-3-PUFAs) health benefits has been triggered the introduction of alternative additives in aqua feed that cause not only modulation in fish immune response but also fortification of their fillet. In this context, the role of microalgae mix (NSS) containing Nannochloropsis oculate and Schizochytrium and Spirulina species, which were enriched with bioactive molecules, especially EPA and DHA, was assessed on Nile tilapia's performance, fillet antioxidant stability, immune response, and disease resistance. Varying levels of NSS (0.75, 1.5, and 3%) were added to Nile tilapia's diet for 12 weeks and then a challenge of fish with virulent Aeromonas hydrophila (A. hydrophila) was carried out. Results showed that groups fed NSS, especially at higher levels, showed an improved WG and FCR, which corresponded with enhanced digestive enzymes' activities. Higher T-AOC was detected in muscle tissues of NSS3.0% fed fish with remarkable reduction in ROS, H2O2, and MDA contents, which came in parallel with upregulation of GSH-Px, CAT, and SOD genes. Notably, the contents of EPA and DHA in fillet were significantly increased with increasing the NSS levels. The mean log10 counts of pathogenic Vibrio and Staphylococcus species were reduced, and conversely, the populations of beneficial Lactobacillus and Bacillus species were increased more eminent after supplementation of NSS3.0% and NSS1.5%. Moreover, regulation of the immune response (lysozyme, IgM, ACH50, NO, and MPO), upregulation of IL-10, TGF-ß, and IgM, and downregulation of IL-1ß, TNF-α, HSP70,and COX-2 were observed following dietary higher NSS levels. After challenge, reduction in A. hydrophila counts was more prominent, especially in NSS3.0% supplemented group. Taken together, the current study encourages the incorporation of such microalgae mix in Nile tilapia's diet for targeting maximum performance, superior fillet quality, and protection against A. hydrophila.