Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.878
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 166(2): 273-274, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419865

RESUMO

A study finds that deficits in touch-sensing somatosensory neurons contribute to social interaction and anxiety phenotypes in mouse models of autism and Rett syndrome. These findings suggest that some core symptoms of autism might originate from aberrant development or function of the peripheral nervous system.


Assuntos
Transtorno Autístico/genética , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Modelos Animais de Doenças , Camundongos , Síndrome de Rett/genética , Tato
2.
CA Cancer J Clin ; 73(1): 49-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969103

RESUMO

Peritoneal metastasis (PM) is often regarded as a less frequent pattern of spread; however, collectively across all spectra of primary tumors, the consequences of PM impact a large population of patients annually. Unlike other modes of metastasis, symptoms at presentation or during the treatment course are common, representing an additional challenge in the management of PM. Early efforts with chemotherapy and incomplete surgical interventions transiently improved symptoms, but durable symptom control and survival extension were rare, which established a perspective of treatment futility for PM through most of the 20th century. Notably, the continued development of better systemic therapy combinations, optimization of cytoreductive surgery (CRS), and rigorous investigation of combining regional therapy-specifically hyperthermic intraperitoneal chemotherapy-with CRS, have resulted in more effective multimodal treatment options for patients with PM. In this article, the authors provide a comprehensive review of the data establishing the contemporary approach for tumors with a high frequency of PM, including appendix, colorectal, mesothelioma, and gastric cancers. The authors also explore the emerging role of adding hyperthermic intraperitoneal chemotherapy to the well established paradigm of CRS and systemic therapy for advanced ovarian cancer, as well as the recent clinical trials identifying the efficacy of poly(adenosine diphosphate ribose) polymerase maintenance therapy. Finally, recent data are included that explore the role of precision medicine technology in PM management that, in the future, may help further improve patient selection, identify the best systemic therapy regimens, detect actionable mutations, and identify new targets for drug development.


Assuntos
Neoplasias Colorretais , Hipertermia Induzida , Neoplasias Peritoneais , Humanos , Neoplasias Peritoneais/terapia , Neoplasias Peritoneais/secundário , Futilidade Médica , Hipertermia Induzida/métodos , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Procedimentos Cirúrgicos de Citorredução/métodos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia
3.
Nature ; 628(8007): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538786

RESUMO

Antibody and chimeric antigen receptor (CAR) T cell-mediated targeted therapies have improved survival in patients with solid and haematologic malignancies1-9. Adults with T cell leukaemias and lymphomas, collectively called T cell cancers, have short survival10,11 and lack such targeted therapies. Thus, T cell cancers particularly warrant the development of CAR T cells and antibodies to improve patient outcomes. Preclinical studies showed that targeting T cell receptor ß-chain constant region 1 (TRBC1) can kill cancerous T cells while preserving sufficient healthy T cells to maintain immunity12, making TRBC1 an attractive target to treat T cell cancers. However, the first-in-human clinical trial of anti-TRBC1 CAR T cells reported a low response rate and unexplained loss of anti-TRBC1 CAR T cells13,14. Here we demonstrate that CAR T cells are lost due to killing by the patient's normal T cells, reducing their efficacy. To circumvent this issue, we developed an antibody-drug conjugate that could kill TRBC1+ cancer cells in vitro and cure human T cell cancers in mouse models. The anti-TRBC1 antibody-drug conjugate may provide an optimal format for TRBC1 targeting and produce superior responses in patients with T cell cancers.


Assuntos
Imunoconjugados , Leucemia de Células T , Linfoma de Células T , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Imunoterapia Adotiva , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/imunologia , Linfoma de Células T/tratamento farmacológico , Linfoma de Células T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nature ; 620(7976): 988-993, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532936

RESUMO

Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials1-5. One seminal example is the Einstein-de Haas effect in ferromagnets1,6,7, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive. Here we observed a seesaw-like rotation of reciprocal lattice peaks of an antiferromagnetic nanolayer film, whose gigahertz structural resonance exhibits more than an order-of-magnitude amplification after cooling below the Néel temperature. Using a suite of ultrafast diffraction and microscopy techniques, we directly visualize this spin-driven rotation in reciprocal space at the nanoscale. This motion corresponds to interlayer shear in real space, in which individual micro-patches of the film behave as coherent oscillators that are phase-locked and shear along the same in-plane axis. Using time-resolved optical polarimetry, we further show that the enhanced mechanical response strongly correlates with ultrafast demagnetization, which releases elastic energy stored in local strain gradients to drive the oscillators. Our work not only offers the first microscopic view of spin-mediated mechanical motion of an antiferromagnet but it also identifies a new route towards realizing high-frequency resonators8,9 up to the millimetre band, so the capability of controlling magnetic states on the ultrafast timescale10-13 can be readily transferred to engineering the mechanical properties of nanodevices.

5.
Nature ; 615(7950): 143-150, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630998

RESUMO

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Fatores de Virulência , Virulência , Animais , Camundongos , Linhagem Celular , Evasão da Resposta Imune , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Humanos , Vacinas contra COVID-19/imunologia , Pulmão/citologia , Pulmão/virologia , Replicação Viral , Mutação
6.
Nature ; 613(7942): 160-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477540

RESUMO

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Assuntos
Adipócitos , Proteínas de Ligação ao Cálcio , Metabolismo dos Lipídeos , Proteínas de Membrana , Animais , Feminino , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Placenta , Triglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Ácidos Graxos/metabolismo , Hipotermia/metabolismo , Termogênese
7.
Nature ; 615(7953): 652-659, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890232

RESUMO

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Assuntos
Produtos Agrícolas , Diploide , Variação Genética , Genoma de Planta , Genômica , Melhoramento Vegetal , Proteínas de Plantas , Vicia faba , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Variações do Número de Cópias de DNA/genética , DNA Satélite/genética , Amplificação de Genes/genética , Genes de Plantas/genética , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Geografia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinação Genética , Retroelementos/genética , Sementes/anatomia & histologia , Sementes/genética , Vicia faba/anatomia & histologia , Vicia faba/genética , Vicia faba/metabolismo
8.
Nature ; 599(7886): 628-634, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34662886

RESUMO

A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study2. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P ≤ 2.18 × 10-11. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene-trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.


Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , África/etnologia , Ásia/etnologia , Asma/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , Oftalmopatias/genética , Feminino , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Hepatopatias/genética , Masculino , Mutação , Neoplasias/genética , Característica Quantitativa Herdável , Reino Unido
9.
Proc Natl Acad Sci U S A ; 121(8): e2306973121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346200

RESUMO

Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Nanoestruturas , Humanos , Glioblastoma/patologia , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Nanotecnologia , Nanoestruturas/química , Microambiente Tumoral , Neoplasias Encefálicas/patologia
10.
Proc Natl Acad Sci U S A ; 121(23): e2400727121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38819998

RESUMO

Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime.

12.
CA Cancer J Clin ; 69(5): 402-429, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31283845

RESUMO

Mesothelioma affects mostly older individuals who have been occupationally exposed to asbestos. The global mesothelioma incidence and mortality rates are unknown, because data are not available from developing countries that continue to use large amounts of asbestos. The incidence rate of mesothelioma has decreased in Australia, the United States, and Western Europe, where the use of asbestos was banned or strictly regulated in the 1970s and 1980s, demonstrating the value of these preventive measures. However, in these same countries, the overall number of deaths from mesothelioma has not decreased as the size of the population and the percentage of old people have increased. Moreover, hotspots of mesothelioma may occur when carcinogenic fibers that are present in the environment are disturbed as rural areas are being developed. Novel immunohistochemical and molecular markers have improved the accuracy of diagnosis; however, about 14% (high-resource countries) to 50% (developing countries) of mesothelioma diagnoses are incorrect, resulting in inadequate treatment and complicating epidemiological studies. The discovery that germline BRCA1-asssociated protein 1 (BAP1) mutations cause mesothelioma and other cancers (BAP1 cancer syndrome) elucidated some of the key pathogenic mechanisms, and treatments targeting these molecular mechanisms and/or modulating the immune response are being tested. The role of surgery in pleural mesothelioma is controversial as it is difficult to predict who will benefit from aggressive management, even when local therapies are added to existing or novel systemic treatments. Treatment outcomes are improving, however, for peritoneal mesothelioma. Multidisciplinary international collaboration will be necessary to improve prevention, early detection, and treatment.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/análise , Mesotelioma/terapia , Neoplasias Pleurais/terapia , Pneumonectomia/métodos , Amianto/efeitos adversos , Austrália/epidemiologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/patologia , Terapia Combinada/métodos , Erros de Diagnóstico , Europa (Continente)/epidemiologia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Carga Global da Doença , Humanos , Incidência , Exposição por Inalação/efeitos adversos , Cooperação Internacional , Mesotelioma/diagnóstico , Mesotelioma/epidemiologia , Mesotelioma/etiologia , Terapia de Alvo Molecular/métodos , Exposição Ocupacional/efeitos adversos , Pleura/efeitos dos fármacos , Pleura/patologia , Pleura/cirurgia , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/epidemiologia , Neoplasias Pleurais/etiologia , Prognóstico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Estados Unidos/epidemiologia
13.
Nature ; 586(7831): 749-756, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087929

RESUMO

The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.


Assuntos
Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , Mutação com Perda de Função/genética , Fenótipo , Idoso , Densidade Óssea/genética , Colágeno Tipo VI/genética , Demografia , Feminino , Genes BRCA1 , Genes BRCA2 , Genótipo , Humanos , Canais Iônicos/genética , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Penetrância , Fragmentos de Peptídeos/genética , Reino Unido , Varizes/genética , Proteínas Ativadoras de ras GTPase/genética
14.
Nature ; 565(7737): 61-66, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602749

RESUMO

Topological quantum materials exhibit fascinating properties1-3, with important applications for dissipationless electronics and fault-tolerant quantum computers4,5. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors6. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron-ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend7-9. However, conventional means of applying strain through heteroepitaxial lattice mismatch10 and dislocations11 are not extendable to controllable time-varying protocols, which are required in transistors. Integration into a functional device requires the ability to go beyond the robust, topologically protected properties of materials and to manipulate the topology at high speeds. Here we use crystallographic measurements by relativistic electron diffraction to demonstrate that terahertz light pulses can be used to induce terahertz-frequency interlayer shear strain with large strain amplitude in the Weyl semimetal WTe2, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements indicate that this transition is associated with a symmetry change to a centrosymmetric, topologically trivial phase. We further show that such shear strain provides an ultrafast, energy-efficient way of inducing robust, well separated Weyl points or of annihilating all Weyl points of opposite chirality. This work demonstrates possibilities for ultrafast manipulation of the topological properties of solids and for the development of a topological switch operating at terahertz frequencies.

15.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717626

RESUMO

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

16.
Lancet Oncol ; 25(4): 509-517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547894

RESUMO

BACKGROUND: The introduction of adjuvant systemic treatment for patients with high-risk melanomas necessitates accurate staging of disease. However, inconsistencies in outcomes exist between disease stages as defined by the American Joint Committee on Cancer (8th edition). We aimed to develop a tool to predict patient-specific outcomes in people with melanoma rather than grouping patients according to disease stage. METHODS: Patients older than 13 years with confirmed primary melanoma who underwent sentinel lymph node biopsy (SLNB) between Oct 29, 1997, and Nov 11, 2013, at four European melanoma centres (based in Berlin, Germany; Amsterdam and Rotterdam, the Netherlands; and Warsaw, Poland) were included in the development cohort. Potential predictors of recurrence-free and melanoma-specific survival assessed were sex, age, presence of ulceration, primary tumour location, histological subtype, Breslow thickness, sentinel node status, number of sentinel nodes removed, maximum diameter of the largest sentinel node metastasis, and Dewar classification. A prognostic model and nomogram were developed to predict 5-year recurrence-free survival on a continuous scale in patients with stage pT1b or higher melanomas. This model was also calibrated to predict melanoma-specific survival. Model performance was assessed by discrimination (area under the time-dependent receiver operating characteristics curve [AUC]) and calibration. External validation was done in a cohort of patients with primary melanomas who underwent SLNB between Jan 30, 1997, and Dec 12, 2013, at the Melanoma Institute Australia (Sydney, NSW, Australia). FINDINGS: The development cohort consisted of 4071 patients, of whom 2075 (51%) were female and 1996 (49%) were male. 889 (22%) had sentinel node-positive disease and 3182 (78%) had sentinel node-negative disease. The validation cohort comprised 4822 patients, of whom 1965 (41%) were female and 2857 (59%) were male. 891 (18%) had sentinel node-positive disease and 3931 (82%) had sentinel node-negative disease. Median follow-up was 4·8 years (IQR 2·3-7·8) in the development cohort and 5·0 years (2·2-8·9) in the validation cohort. In the development cohort, 5-year recurrence-free survival was 73·5% (95% CI 72·0-75·1) and 5-year melanoma-specific survival was 86·5% (85·3-87·8). In the validation cohort, the corresponding estimates were 66·1% (64·6-67·7) and 83·3% (82·0-84·6), respectively. The final model contained six prognostic factors: sentinel node status, Breslow thickness, presence of ulceration, age at SLNB, primary tumour location, and maximum diameter of the largest sentinel node metastasis. In the development cohort, for the model's prediction of recurrence-free survival, the AUC was 0·80 (95% CI 0·78-0·81); for prediction of melanoma-specific survival, the AUC was 0·81 (0·79-0·84). External validation showed good calibration for both outcomes, with AUCs of 0·73 (0·71-0·75) and 0·76 (0·74-0·78), respectively. INTERPRETATION: Our prediction model and nomogram accurately predicted patient-specific risk probabilities for 5-year recurrence-free and melanoma-specific survival. These tools could have important implications for clinical decision making when considering adjuvant treatments in patients with high-risk melanomas. FUNDING: Erasmus Medical Centre Cancer Institute.


Assuntos
Linfadenopatia , Melanoma , Linfonodo Sentinela , Neoplasias Cutâneas , Humanos , Masculino , Feminino , Melanoma/patologia , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/patologia , Estudos Retrospectivos , Metástase Linfática , Linfonodo Sentinela/cirurgia , Linfonodo Sentinela/patologia , Prognóstico , Linfadenopatia/patologia
17.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317439

RESUMO

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

18.
Am J Hum Genet ; 108(7): 1350-1355, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34115965

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, and results are publicly available through the Regeneron Genetics Center COVID-19 Results Browser.


Assuntos
COVID-19/diagnóstico , COVID-19/genética , Sequenciamento do Exoma , Exoma/genética , Predisposição Genética para Doença , Hospitalização/estatística & dados numéricos , COVID-19/imunologia , COVID-19/terapia , Feminino , Humanos , Interferons/genética , Masculino , Prognóstico , SARS-CoV-2 , Tamanho da Amostra
19.
Ann Surg ; 279(5): 850-856, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37641957

RESUMO

OBJECTIVE: To use a customized smartphone application to prospectively measure QOL and the real-time patient experience during neoadjuvant therapy (NT). BACKGROUND: NT is increasingly used for patients with localized gastrointestinal (GI) cancers. There is little data assessing patient experience and quality of life (QOL) during NT for GI cancers. METHODS: Patients with GI cancers receiving NT were instructed on using a customized smartphone application through which the Functional Assessment of Cancer Therapy-General (FACT-G) questionnaire, a validated measure of health-related QOL, was administered at baseline, every 30 days, and at the completion of NT. Participants also tracked their moods and symptoms and used free-text journaling functionalities in the application. Mean overall and subsection health-related QOL scores were calculated during NT. RESULTS: Among 104 enrolled patients, the mean age was 60.5 ± 11.5 years and 55% were males. Common cancer diagnoses were colorectal (40%), pancreatic (37%), and esophageal (15%). Mean overall FACT-G scores did not change during NT ( P = 0.987). While functional well-being scores were consistently the lowest and social well-being scores the highest, FACT subscores similarly did not change during NT (all P > 0.01). The most common symptoms reported during NT were fatigue, insomnia, and anxiety (39.3%, 34.5%, and 28.3% of patient entries, respectively). Qualitative analysis of free-text journaling entries identified anxiety, fear, and frustration as the most common themes, but also the importance of social support systems and confidence in health care providers. CONCLUSIONS: While patient symptom burden remains high, results of this prospective cohort study suggest QOL is maintained during NT for localized GI cancers.


Assuntos
Neoplasias , Qualidade de Vida , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Terapia Neoadjuvante/métodos , Estudos Prospectivos , Avaliação de Resultados da Assistência ao Paciente
20.
Gastroenterology ; 165(4): 946-962.e13, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454979

RESUMO

BACKGROUND & AIMS: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated. METHODS: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid cocultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44. RESULTS: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures. CONCLUSIONS: We identified an UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC.


Assuntos
Colite Ulcerativa , Antígenos HLA-DP , Humanos , Antígenos HLA-DP/genética , Colite Ulcerativa/genética , Células Matadoras Naturais , Haplótipos , Células Epiteliais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa