Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Bacteriol ; 206(1): e0039723, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38054739

RESUMO

Members of the widely conserved progestin and adipoQ receptor (PAQR) family function to maintain membrane homeostasis: membrane fluidity and fatty acid composition in eukaryotes and membrane energetics and fatty acid composition in bacteria. All PAQRs consist of a core seven transmembrane domain structure and five conserved amino acids (three histidines, one serine, and one aspartic acid) predicted to form a hydrolase-like catalytic site. PAQR homologs in Bacteria (called TrhA, for transmembrane homeostasis protein A) maintain homeostasis of membrane charge gradients, like the membrane potential and proton gradient that comprise the proton motive force, but their molecular mechanisms are not yet understood. Here, we show that TrhA in Escherichia coli has a periplasmic C-terminus, which places the five conserved residues shared by all PAQRs at the cytoplasmic interface of the membrane. Here, we characterize several conserved residues predicted to form an active site by site-directed mutagenesis. We also identify a specific role for TrhA in modulating unsaturated fatty acid biosynthesis with conserved residues required to either promote or reduce the abundance of unsaturated fatty acids. We also identify distinct roles for the conserved residues in supporting TrhA's role in maintaining membrane energetics homeostasis that suggest that both functions are intertwined and probably partly dependent on one another. An analysis of domain architecture of TrhA-like domains in Bacteria further supports a function of TrhA linking membrane energetics homeostasis with biosynthesis of unsaturated fatty acid in the membrane. IMPORTANCE Progestin and adipoQ receptor (PAQR) family proteins are evolutionary conserved regulators of membrane homeostasis and have been best characterized in eukaryotes. Bacterial PAQR homologs, named TrhA (transmembrane homeostasis protein A), regulate membrane energetics homeostasis through an unknown mechanism. Here, we present evidence linking TrhA to both membrane energetics homeostasis and unsaturated fatty acid biosynthesis. Analysis of domain architecture together with experimental evidence suggests a model where TrhA activity on unsaturated fatty acid biosynthesis is regulated by changes in membrane energetics to dynamically adjust membrane homeostasis.


Assuntos
Progestinas , Receptores de Adiponectina , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Esteroides , Ácidos Graxos/metabolismo , Homeostase , Ácidos Graxos Insaturados , Bactérias/metabolismo
2.
Appl Environ Microbiol ; 90(6): e0076024, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38775579

RESUMO

Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacterium Azospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter of tlp2 is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.


Assuntos
Azospirillum brasilense , Proteínas de Bactérias , Quimiotaxia , Nitratos , Raízes de Plantas , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiologia , Nitratos/metabolismo , Raízes de Plantas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
J Bacteriol ; 205(6): e0048422, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37255486

RESUMO

Chemotaxis in Bacteria and Archaea depends on the presence of hexagonal polar arrays composed of membrane-bound chemoreceptors that interact with rings of baseplate signaling proteins. In the alphaproteobacterium Azospirillum brasilense, chemotaxis is controlled by two chemotaxis signaling systems (Che1 and Che4) that mix at the baseplates of two spatially distinct membrane-bound chemoreceptor arrays. The subcellular localization and organization of transmembrane chemoreceptors in chemotaxis signaling clusters have been well characterized but those of soluble chemoreceptors remain relatively underexplored. By combining mutagenesis, microscopy, and biochemical assays, we show that the cytoplasmic chemoreceptors AerC and Tlp4b function in chemotaxis and localize to and interact with membrane-bound chemoreceptors and chemotaxis signaling proteins from both polar arrays, indicating that soluble chemoreceptors are promiscuous. The interactions of AerC and Tlp4b with polar chemotaxis signaling clusters are not equivalent and suggest distinct functions. Tlp4b, but not AerC, modulates the abundance of chemoreceptors within the signaling clusters through an unknown mechanism. The AerC chemoreceptor, but not Tlp4b, is able to traffic in and out of chemotaxis signaling clusters depending on its level of expression. We also identify a role of the chemoreceptor composition of chemotaxis signaling clusters in regulating their polar subcellular organization. The organization of chemotaxis signaling proteins as large membrane-bound arrays underlies chemotaxis sensitivity. Our findings suggest that the composition of chemoreceptors may fine-tune chemotaxis signaling not only through their chemosensory specificity but also through their role in the organization of polar chemotaxis signaling clusters. IMPORTANCE Cytoplasmic chemoreceptors represent about 14% of all chemoreceptors encoded in bacterial and archaeal genomes, but little is known about how they interact with and function in large polar assemblies of membrane-bound chemotaxis signaling clusters. Here, we show that two soluble chemoreceptors with a role in chemotaxis are promiscuous and interact with two distinct membrane-bound chemotaxis signaling clusters that control all chemotaxis responses in Azospirillum brasilense. We also found that any change in the chemoreceptor composition of chemotaxis signaling clusters alters their polar organization, suggesting a dynamic interplay between the sensory specificity of chemotaxis signaling clusters and their polar membrane organization.


Assuntos
Azospirillum brasilense , Quimiotaxia , Quimiotaxia/fisiologia , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras , Citoplasma/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética
4.
Mol Microbiol ; 118(3): 223-243, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35808893

RESUMO

The bacterial flagellum is a complex macromolecular machine that drives bacteria through diverse fluid environments. Although many components of the flagellar motor are conserved across species, the roles of FliL are numerous and species-specific. Here, we have characterized an additional player required for flagellar motor function in Sinorhizobium meliloti, MotF, which we have identified as a FliL paralog. We performed a comparative analysis of MotF and FliL, identified interaction partners through bacterial two-hybrid and pull-down assays, and investigated their roles in motility and motor rotation. Both proteins form homooligomers, and interact with each other, and with the stator proteins MotA and MotB. The ∆motF mutant exhibits normal flagellation but its swimming behavior and flagellar motor activity are severely impaired and erratic. In contrast, the ∆fliL mutant is mostly aflagellate and nonmotile. Amino acid substitutions in cytoplasmic regions of MotA or disruption of the proton channel plug of MotB partially restored motor activity to the ∆motF but not the ∆fliL mutant. Altogether, our findings indicate that both, MotF and FliL, are essential for flagellar motor torque generation in S. meliloti. FliL may serve as a scaffold for stator integration into the motor, and MotF is required for proton channel modulation.


Assuntos
Flagelos , Sinorhizobium meliloti , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Motores Moleculares/metabolismo , Prótons , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Torque
5.
J Bacteriol ; 204(4): e0058321, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35285724

RESUMO

Membrane potential homeostasis is essential for cell survival. Defects in membrane potential lead to pleiotropic phenotypes, consistent with the central role of membrane energetics in cell physiology. Homologs of the progestin and AdipoQ receptors (PAQRs) are conserved in multiple phyla of Bacteria and Eukarya. In eukaryotes, PAQRs are proposed to modulate membrane fluidity and fatty acid (FA) metabolism. The role of bacterial homologs has not been elucidated. Here, we use Escherichia coli and Bacillus subtilis to show that bacterial PAQR homologs, which we name "TrhA," have a role in membrane energetics homeostasis. Using transcriptional fusions, we show that E. coli TrhA (encoded by yqfA) is part of the unsaturated fatty acid biosynthesis regulon. Fatty acid analyses and physiological assays show that a lack of TrhA in both E. coli and B. subtilis (encoded by yplQ) provokes subtle but consistent changes in membrane fatty acid profiles that do not translate to control of membrane fluidity. Instead, membrane proteomics in E. coli suggested a disrupted energy metabolism and dysregulated membrane energetics in the mutant, though it grew similarly to its parent. These changes translated into a disturbed membrane potential in the mutant relative to its parent under various growth conditions. Similar dysregulation of membrane energetics was observed in a different E. coli strain and in the distantly related B. subtilis. Together, our findings are consistent with a role for TrhA in membrane energetics homeostasis, through a mechanism that remains to be elucidated. IMPORTANCE Eukaryotic homologs of the progestin and AdipoQ receptor family (PAQR) have been shown to regulate membrane fluidity by affecting, through unknown mechanisms, unsaturated fatty acid (FA) metabolism. The bacterial homologs studied here mediate small and consistent changes in unsaturated FA metabolism that do not seem to impact membrane fluidity but, rather, alter membrane energetics homeostasis. Together, the findings here suggest that bacterial and eukaryotic PAQRs share functions in maintaining membrane homeostasis (fluidity in eukaryotes and energetics for bacteria with TrhA homologs).


Assuntos
Escherichia coli , Progestinas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Homeostase , Progestinas/metabolismo
6.
Mol Plant Microbe Interact ; 33(2): 124-134, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31687914

RESUMO

Although the influence of microbiomes on the health of plant hosts is evident, specific mechanisms shaping the structure and dynamics of microbial communities in the phyllosphere and rhizosphere are only beginning to become clear. Traditionally, plant-microbe interactions have been studied using cultured microbial isolates and plant hosts but the rising use of 'omics tools provides novel snapshots of the total complex community in situ. Here, we discuss the recent advances in tools and techniques used to monitor plant-microbe interactions and the chemical signals that influence these relationships in above- and belowground tissues. Particularly, we highlight advances in integrated microscopy that allow observation of the chemical exchange between individual plant and microbial cells, as well as high-throughput, culture-independent approaches to investigate the total genetic and metabolic contribution of the community. The chemicals discussed have been identified as relevant signals across experimental spectrums. However, mechanistic insight into the specific interactions mediated by many of these chemicals requires further testing. Experimental designs that attempt to bridge the gap in biotic complexity between single strains and whole communities will advance our understanding of the chemical signals governing plant-microbe associations in the rhizosphere and phyllosphere.


Assuntos
Interações Hospedeiro-Patógeno , Microbiota , Plantas , Rizosfera , Bactérias/química , Bactérias/metabolismo , Plantas/microbiologia
7.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32471917

RESUMO

Plant roots shape the rhizosphere community by secreting compounds that recruit diverse bacteria. Colonization of various plant roots by the motile alphaproteobacterium Azospirillum brasilense causes increased plant growth, root volume, and crop yield. Bacterial chemotaxis in this and other motile soil bacteria is critical for competitive colonization of the root surfaces. The role of chemotaxis in root surface colonization has previously been established by endpoint analyses of bacterial colonization levels detected a few hours to days after inoculation. More recently, microfluidic devices have been used to study plant-microbe interactions, but these devices are size limited. Here, we use a novel slide-in chamber that allows real-time monitoring of plant-microbe interactions using agriculturally relevant seedlings to characterize how bacterial chemotaxis mediates plant root surface colonization during the association of A. brasilense with Triticum aestivum (wheat) and Medicago sativa (alfalfa) seedlings. We track A. brasilense accumulation in the rhizosphere and on the root surfaces of wheat and alfalfa. A. brasilense motile cells display distinct chemotaxis behaviors in different regions of the roots, including attractant and repellent responses that ultimately drive surface colonization patterns. We also combine these observations with real-time analyses of behaviors of wild-type and mutant strains to link chemotaxis responses to distinct chemicals identified in root exudates to specific chemoreceptors that together explain the chemotactic response of motile cells in different regions of the roots. Furthermore, the bacterial second messenger c-di-GMP modulates these chemotaxis responses. Together, these findings illustrate dynamic bacterial chemotaxis responses to rhizosphere gradients that guide root surface colonization.IMPORTANCE Plant root exudates play critical roles in shaping rhizosphere microbial communities, and the ability of motile bacteria to respond to these gradients mediates competitive colonization of root surfaces. Root exudates are complex chemical mixtures that are spatially and temporally dynamic. Identifying the exact chemical(s) that mediates the recruitment of soil bacteria to specific regions of the roots is thus challenging. Here, we connect patterns of bacterial chemotaxis responses and sensing by chemoreceptors to chemicals found in root exudate gradients and identify key chemical signals that shape root surface colonization in different plants and regions of the roots.


Assuntos
Azospirillum brasilense/fisiologia , Medicago sativa/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Plântula/metabolismo , Triticum/metabolismo , Quimiotaxia , Medicago sativa/microbiologia , Plântula/microbiologia , Triticum/microbiologia
8.
Biophys J ; 116(8): 1527-1537, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30975454

RESUMO

Chemotaxis, together with motility, helps bacteria foraging in their habitat. Motile bacteria exhibit a variety of motility patterns, often controlled by chemotaxis, to promote dispersal. Motility in many bacteria is powered by a bidirectional flagellar motor. The flagellar motor has been known to briefly pause during rotation because of incomplete reversals or stator detachment. Transient pauses were previously observed in bacterial strains lacking CheY, and these events could not be explained by incomplete motor reversals or stator detachment. Here, we systematically analyzed swimming trajectories of various chemotaxis mutants of the monotrichous soil bacterium, Azospirillum brasilense. Like other polar flagellated bacterium, the main swimming pattern in A. brasilense is run and reverse. A. brasilense also uses run-pauses and putative run-reverse-flick-like swimming patterns, although these are rare events. A. brasilense mutant derivatives lacking the chemotaxis master histidine kinase, CheA4, or the central response regulator, CheY7, also showed transient pauses. Strikingly, the frequency of transient pauses increased dramatically in the absence of CheY4. Our findings collectively suggest that reversals and pauses are controlled through signaling by distinct CheY homologs, and thus are likely to be functionally important in the lifestyle of this soil organism.


Assuntos
Azospirillum brasilense/citologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Quimiotaxia , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Azospirillum brasilense/metabolismo , Rotação , Natação
9.
BMC Microbiol ; 19(1): 101, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101077

RESUMO

BACKGROUND: Bacterial chemotaxis, the ability of motile bacteria to navigate gradients of chemicals, plays key roles in the establishment of various plant-microbe associations, including those that benefit plant growth and crop productivity. The motile soil bacterium Azospirillum brasilense colonizes the rhizosphere and promotes the growth of diverse plants across a range of environments. Aerotaxis, or the ability to navigate oxygen gradients, is a widespread behavior in bacteria. It is one of the strongest behavioral responses in A. brasilense and it is essential for successful colonization of the root surface. Oxygen is one of the limiting nutrients in the rhizosphere where density and activity of organisms are greatest. The aerotaxis response of A. brasilense is also characterized by high precision with motile cells able to detect narrow regions in a gradient where the oxygen concentration is low enough to support their microaerobic lifestyle and metabolism. RESULTS: Here, we present a mathematical model for aerotaxis band formation that captures most critical features of aerotaxis in A. brasilense. Remarkably, this model recapitulates experimental observations of the formation of a stable aerotactic band within 2 minutes of exposure to the air gradient that were not captured in previous modeling efforts. Using experimentally determined parameters, the mathematical model reproduced an aerotactic band at a distance from the meniscus and with a width that matched the experimental observation. CONCLUSIONS: Including experimentally determined parameter values allowed us to validate a mathematical model for aerotactic band formation in spatial gradients that recapitulates the spatiotemporal stability of the band and its position in the gradient as well as its overall width. This validated model also allowed us to capture the range of oxygen concentrations the bacteria prefer during aerotaxis, and to estimate the effect of parameter values (e.g. oxygen consumption rate), both of which are difficult to obtain in experiments.


Assuntos
Azospirillum brasilense/crescimento & desenvolvimento , Oxigênio/metabolismo , Azospirillum brasilense/metabolismo , Quimiotaxia , Modelos Teóricos , Rizosfera
10.
Mol Plant Microbe Interact ; 31(7): 737-749, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29424664

RESUMO

The genome of the Azorhizobium caulinodans ORS571 contains a unique chemotaxis gene cluster (che) including five chemotaxis genes: cheA, cheW, cheY1, cheB, and cheR. Analysis of the role of the chemotaxis cluster of A. caulinodans using deletion mutant strains revealed that CheA or the Che signaling pathway controls chemotaxis behavior and flagella-driven motility and plays important roles in formation of biofilms and production of extracellular polysaccharides (EPS). Furthermore, the deletion mutants (ΔcheA and ΔcheA-R) were defective in competitive adsorption and colonization on the root surface of host plants. In addition, a functional CheA or Che pathway promoted competitive nodulation on roots and stems. Interestingly, a nonflagellated mutant, ΔfliM, displayed a phenotype highly similar to that of the ΔcheA or ΔcheA-R mutant strains. These findings suggest that through controlling flagella-driven motility behavior, the chemotaxis signaling pathway in A. caulinodans coordinates biofilm formation, EPS, and competitive colonization and nodulation.


Assuntos
Azorhizobium/fisiologia , Biofilmes/crescimento & desenvolvimento , Quimiotaxia/fisiologia , Flagelos/fisiologia , Nodulação/fisiologia , Polissacarídeos Bacterianos/biossíntese , Movimento , Caules de Planta/microbiologia , Sesbania/microbiologia
11.
J Bacteriol ; 199(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28416707

RESUMO

Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense, Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms.IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular mechanism by which a single CheA protein controls two unrelated functions: chemotaxis and cell length. Acquisition of this multifunctionality is seemingly a recent evolutionary event. The findings illustrate a mechanism by which chemotaxis function may be co-opted to regulate additional cellular functions.


Assuntos
Azospirillum brasilense/citologia , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Quimiotaxia/fisiologia , Proteínas de Membrana/fisiologia , Domínios Proteicos/fisiologia , Azospirillum brasilense/genética , Proteínas de Bactérias/genética , Quimiotaxia/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Domínios Proteicos/genética , Isoformas de Proteínas
12.
J Bacteriol ; 199(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28264994

RESUMO

Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger cyclic di-GMP (c-di-GMP) as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared-light-regulated diguanylate cyclase and a blue-light-regulated c-di-GMP phosphodiesterase. It allows the generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the time scale of chemotaxis signaling. We provide experimental evidence that binding of c-di-GMP to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense change with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state.IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and modulates their contribution to the overall chemotaxis response. Here, we used an optogenetic system to perturb intracellular concentrations of the bacterial second messenger c-di-GMP to show that in some chemotaxis receptors, c-di-GMP functions in a similar feedback loop to connect the metabolic status of the cells to the sensory activity of chemotaxis receptors.


Assuntos
Azospirillum brasilense/fisiologia , Quimiotaxia , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Locomoção , Carbono/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Luz , Optogenética/métodos , Oxigênio/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Transdução de Sinais
13.
J Bacteriol ; 198(12): 1764-1772, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068592

RESUMO

UNLABELLED: The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. IMPORTANCE: Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters.


Assuntos
Azospirillum brasilense/fisiologia , Quimiotaxia , Transdução de Sinais , Azospirillum brasilense/citologia , Azospirillum brasilense/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Raízes de Plantas/microbiologia , Triticum/microbiologia
14.
Plant Mol Biol ; 90(6): 549-59, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26797793

RESUMO

Beneficial plant-microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization.


Assuntos
Fenômenos Fisiológicos Bacterianos , Quimiotaxia/fisiologia , Plantas/metabolismo , Plantas/microbiologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biodiversidade , Regulação Bacteriana da Expressão Gênica , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Transdução de Sinais , Simbiose
15.
Appl Environ Microbiol ; 82(11): 3174-84, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994081

RESUMO

UNLABELLED: Azorhizobium caulinodans ORS571 is a free-living nitrogen-fixing bacterium which can induce nitrogen-fixing nodules both on the root and the stem of its legume host Sesbania rostrata This bacterium, which is an obligate aerobe that moves by means of a polar flagellum, possesses a single chemotaxis signal transduction pathway. The objective of this work was to examine the role that chemotaxis and aerotaxis play in the lifestyle of the bacterium in free-living and symbiotic conditions. In bacterial chemotaxis, chemoreceptors sense environmental changes and transmit this information to the chemotactic machinery to guide motile bacteria to preferred niches. Here, we characterized a chemoreceptor of A. caulinodans containing an N-terminal PAS domain, named IcpB. IcpB is a soluble heme-binding protein that localized at the cell poles. An icpB mutant strain was impaired in sensing oxygen gradients and in chemotaxis response to organic acids. Compared to the wild-type strain, the icpB mutant strain was also affected in the production of extracellular polysaccharides and impaired in flocculation. When inoculated alone, the icpB mutant induced nodules on S. rostrata, but the nodules formed were smaller and had reduced N2-fixing activity. The icpB mutant failed to nodulate its host when inoculated competitively with the wild-type strain. Together, the results identify chemotaxis and sensing of oxygen by IcpB as key regulators of the A. caulinodans-S. rostrata symbiosis. IMPORTANCE: Bacterial chemotaxis has been implicated in the establishment of various plant-microbe associations, including that of rhizobial symbionts with their legume host. The exact signal(s) detected by the motile bacteria that guide them to their plant hosts remain poorly characterized. Azorhizobium caulinodans ORS571 is a diazotroph that is a motile and chemotactic rhizobial symbiont of Sesbania rostrata, where it forms nitrogen-fixing nodules on both the roots and the stems of the legume host. We identify here a chemotaxis receptor sensing oxygen in A. caulinodans that is critical for nodulation and nitrogen fixation on the stems and roots of S. rostrata These results identify oxygen sensing and chemotaxis as key regulators of the A. caulinodans-S. rostrata symbiosis.


Assuntos
Azorhizobium caulinodans/fisiologia , Quimiotaxia , Nodulação , Receptores de Superfície Celular/metabolismo , Sesbania/microbiologia , Sesbania/fisiologia , Simbiose , Ácidos Carboxílicos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Técnicas de Inativação de Genes , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Hemeproteínas/metabolismo , Locomoção , Oxigênio/metabolismo , Receptores de Superfície Celular/genética
16.
J Bacteriol ; 197(20): 3230-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216846

RESUMO

Chemotaxis affords motile cells the ability to rapidly respond to environmental challenges by navigating cells to niches favoring growth. Such a property results from the activities of dedicated signal transduction systems on the motility apparatus, such as flagella, type IV pili, and gliding machineries. Once cells have reached a niche with favorable conditions, they often stop moving and aggregate into complex communities termed biofilms. An intermediate and reversible stage that precedes commitment to permanent adhesion often includes transient cell-cell contacts between motile cells. Chemotaxis signaling has been implicated in modulating the transient aggregation of motile cells. Evidence further indicates that chemotaxis-dependent transient cell aggregation events are behavioral responses to changes in metabolic cues that temporarily prohibit permanent attachment by maintaining motility and chemotaxis. This minireview discusses a few examples illustrating the role of chemotaxis signaling in the initiation of cell-cell contacts in bacteria moving via flagella, pili, or gliding.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Quimiotaxia/fisiologia , Aderência Bacteriana/fisiologia , Biofilmes , Movimento
17.
Biochemistry ; 54(32): 5120, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26252172

RESUMO

Biochemistry 2012, 51 (45), 9147−9155. DOI: 10.1021/bi301126g. Page 9148. A corrected version of the Figure 2 legend appears here: Figure 2. Backbone of the ANT D80Y variant in ribbon representation. Two monomer subunits are colored red and green. Bound kanamycin A molecules are colored blue, and Mg-AMPCPP molecules are colored yellow (Protein Data Bank entry 1KNY).14 Page 9148 (last line). The sentence should read, "A thermostable variant of ANT, T130K, was obtained from thermophilic cyanobacterium T. elongatus."


Assuntos
Aminoglicosídeos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , Resistência Microbiana a Medicamentos , Estabilidade Enzimática , Variação Genética , Nucleotidiltransferases/genética , Termodinâmica
18.
Appl Environ Microbiol ; 81(24): 8346-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407887

RESUMO

The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.


Assuntos
Adaptação Fisiológica/fisiologia , Azospirillum brasilense/metabolismo , Aderência Bacteriana/fisiologia , Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Azospirillum brasilense/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida , Elementos de DNA Transponíveis/genética , Floculação , Reação em Cadeia da Polimerase , Espectrometria de Massas em Tandem
19.
PLoS Genet ; 7(12): e1002430, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22216014

RESUMO

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that "hydrobacteria" and "terrabacteria" might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Assuntos
Organismos Aquáticos/genética , Azospirillum/genética , Evolução Biológica , Ecossistema , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Rhodospirillaceae/genética , Sequência de Bases , Genes Essenciais/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética
20.
Phys Biol ; 10(2): 026005, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416991

RESUMO

Dynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell-cell or cell-surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking. We examined the Brownian dynamics of swimming cells in a crowded environment using a model of motorized adhesive tandem particles. Focusing on the motility and geometry of an exemplary motile bacterium Azospirillum brasilense, which is capable of transient cell-cell association (clumping), we constructed a physical model with proper parameters for the computer simulation of the clumping dynamics. By modulating mechanical interaction ('stickiness') between cells and swimming speed, we investigated how equilibrium and active features affect the clumping dynamics. We found that the modulation of active motion is required for the initial aggregation of cells to occur at a realistic time scale. Slowing down the rotation of flagellar motors (and thus swimming speeds) is correlated to the degree of clumping, which is consistent with the experimental results obtained for A. brasilense.


Assuntos
Azospirillum brasilense/fisiologia , Simulação por Computador , Modelos Biológicos , Movimento , Quimiotaxia , Flagelos/fisiologia , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa