Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940843

RESUMO

Contact hypersensitivity (CHS) is an established animal model for allergic contact dermatitis. Dendritic cells (DCs) play an important role in the sensitization phase of CHS by initiating T cell responses to topically applied haptens. The cannabinoid receptors 1 (CB1) and 2 (CB2) modulate DC functions and inflammatory skin responses, but their influence on the capacity of haptenized DCs to induce CHS is still unknown. We found lower CHS responses to 2,4-dinitro-1-fluorobenzene (DNFB) in wild type (WT) mice after adoptive transfer of haptenized Cnr2-/- and Cnr1-/-/Cnr2-/- bone marrow (BM) DCs as compared to transfer of WT DCs. In contrast, induction of CHS was not affected in WT recipients after transfer of Cnr1-/- DCs. In vitro stimulated Cnr2-/- DCs showed lower CCR7 and CXCR4 expression when compared to WT cells, while in vitro migration towards the chemokine ligands was not affected by CB2. Upregulation of MHC class II and co-stimulatory molecules was also reduced in Cnr2-/- DCs. This study demonstrates that CB2 modulates the maturation phenotype of DCs but not their chemotactic capacities in vitro. These findings and the fact that CHS responses mediated by Cnr2-/- DCs are reduced suggest that CB2 is a promising target for the treatment of inflammatory skin conditions.


Assuntos
Células Dendríticas/imunologia , Dermatite Alérgica de Contato/imunologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Quimiotaxia , Células Dendríticas/citologia , Dermatite Alérgica de Contato/genética , Dinitrofluorbenzeno/toxicidade , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptores CCR4/genética , Receptores CCR4/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo
2.
Eur Arch Psychiatry Clin Neurosci ; 269(8): 949-962, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267149

RESUMO

Genetic (G) and environmental (E) factors are involved in the etiology and course of the major psychoses (MP), i.e. major depressive disorder (MDD), bipolar disorder (BD), schizoaffective disorder (SZA) and schizophrenia (SZ). The neurobiological correlates by which these predispositions exert their influence on brain structure, function and course of illness are poorly understood. In the FOR2107 consortium, animal models and humans are investigated. A human cohort of MP patients, healthy subjects at genetic and/or environmental risk, and control subjects (N = 2500) has been established. Participants are followed up after 2 years and twice underwent extensive deep phenotyping (MR imaging, clinical course, neuropsychology, personality, risk/protective factors, biomaterials: blood, stool, urine, hair, saliva). Methods for data reduction, quality assurance for longitudinal MRI data, and (deep) machine learning techniques are employed. In the parallelised animal cluster, genetic risk was introduced by a rodent model (Cacna1c deficiency) and its interactions with environmental risk and protective factors are studied. The animals are deeply phenotyped regarding cognition, emotion, and social function, paralleling the variables assessed in humans. A set of innovative experimental projects connect and integrate data from the human and animal parts, investigating the role of microRNA, neuroplasticity, immune signatures, (epi-)genetics and gene expression. Biomaterial from humans and animals are analyzed in parallel. The FOR2107 consortium will delineate pathophysiological entities with common neurobiological underpinnings ("biotypes") and pave the way for an etiologic understanding of the MP, potentially leading to their prevention, the prediction of individual disease courses, and novel therapies in the future.


Assuntos
Encéfalo/patologia , Transtornos Psicóticos/patologia , Animais , Encéfalo/fisiopatologia , Canais de Cálcio Tipo L/deficiência , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença/genética , Humanos , Entrevista Psicológica , Imageamento por Ressonância Magnética , Masculino , MicroRNAs/metabolismo , Neuroimagem , Fenótipo , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/fisiopatologia , Ratos , Fatores de Risco
3.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500303

RESUMO

Viral infections are associated with increased incidence of severe sepsis. Particularly during the early stages, type I interferons (IFNs) are known mediators of detrimental effects. However, the functional role of early interferon ß (IFNß) and its cellular source during sepsis in the context of preexisting viral infections has not been defined. Using the colon ascendens stent peritonitis (CASP) model, we demonstrate that IFNß-/- and type I IFN receptor (IFNAR1)-/- mice were less susceptible to sepsis after pre-stimulation with the viral mimetic poly(I:C). Wild type (WT) mice treated with poly(I:C) exhibited altered expression patterns of TNF and IL-12p40 during CASP which were dependent on IFNß or IFNAR1, suggesting a mechanism for the increased sepsis susceptibility of WT mice. Using a double cytokine reporter mouse model, we present novel data on the simultaneous expression of IFNß and IL-12p40 on a single cell level during polymicrobial sepsis in vivo. Conventional dendritic cells (cDCs) were identified as primary source of IFNß and the protective cytokine IL-12p40 after CASP surgery irrespective of poly(I:C) pre-stimulation. These data demonstrated that if polymicrobial sepsis is preceded by a viral infection, IFNß and IL-12p40 are expressed by polyfunctional cDCs suggesting that these cells can play both detrimental and beneficial roles during sepsis development.


Assuntos
Coinfecção/imunologia , Células Dendríticas/imunologia , Interferon beta/genética , Poli I-C/administração & dosagem , Receptor de Interferon alfa e beta/genética , Sepse/imunologia , Animais , Coinfecção/sangue , Coinfecção/virologia , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Interferon beta/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/imunologia , Receptor de Interferon alfa e beta/metabolismo , Sepse/virologia , Transdução de Sinais
4.
Int J Mol Sci ; 20(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621022

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and axonal damage. It often affects young adults and can lead to neurological disability. Interferon ß (IFNß) preparations represent widely used treatment regimens for patients with relapsing-remitting MS (RRMS) with therapeutic efficacy in reducing disease progression and frequency of acute exacerbations. In mice, IFNß therapy has been shown to ameliorate experimental autoimmune encephalomyelitis (EAE), an animal model of MS while genetic deletion of IFNß or its receptor augments clinical severity of disease. However, the complex mechanism of action of IFNß in CNS autoimmunity has not been fully elucidated. Here, we review our current understanding of the origin, phenotype, and function of microglia and CNS immigrating macrophages in the pathogenesis of MS and EAE. In addition, we highlight the emerging roles of microglia as IFNß-producing cells and vice versa the impact of IFNß on microglia in CNS autoimmunity. We finally discuss recent progress in unraveling the underlying molecular mechanisms of IFNß-mediated effects in EAE.


Assuntos
Autoimunidade , Sistema Nervoso Central/imunologia , Interferon beta/metabolismo , Microglia/metabolismo , Fármacos Neuroprotetores/metabolismo , Animais , Modelos Animais de Doenças , Humanos
5.
Int J Mol Sci ; 20(14)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319604

RESUMO

Altered adaptive immunity involving T lymphocytes has been found in depressed patients and in stress-induced depression-like behavior in animal models. Peripheral T cells play important roles in homeostasis and function of the central nervous system and thus modulate behavior. However, the T cell phenotype and function associated with susceptibility and resilience to depression remain largely unknown. Here, we characterized splenic T cells in susceptible and resilient mice after 10 days of social defeat stress (SDS). We found equally decreased T cell frequencies and comparably altered expression levels of genes associated with T helper (Th) cell function in resilient and susceptible mice. Interleukin (IL)-17 producing CD4+ and CD8+ T cell numbers in the spleen were significantly increased in susceptible mice. These animals further exhibited significantly reduced numbers of regulatory T cells (Treg) and decreased gene expression levels of TGF-ß. Mice with enhanced Th17 differentiation induced by conditional deletion of PPARγ in CD4+ cells (CD4-PPARγKO), an inhibitor of Th17 development, were equally susceptible to SDS when compared to CD4-PPARγWT controls. These data indicate that enhanced Th17 differentiation alone does not alter stress vulnerability. Thus, SDS promotes Th17 cell and suppresses Treg cell differentiation predominantly in susceptible mice with yet unknown effects in immune responses after stress exposure.


Assuntos
Diferenciação Celular/imunologia , Estresse Psicológico/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Suscetibilidade a Doenças , Masculino , Camundongos , Estresse Psicológico/patologia , Linfócitos T Reguladores/patologia , Células Th17/patologia
6.
Glia ; 66(10): 2246-2261, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30277599

RESUMO

Chemokines are important signaling molecules in the immune and nervous system. Using a fluorescence reporter mouse model, we demonstrate that the chemokine CCL17, a ligand of the chemokine receptor CCR4, is produced in the murine brain, particularly in a subset of hippocampal CA1 neurons. We found that basal expression of Ccl17 in hippocampal neurons was strongly enhanced by peripheral challenge with lipopolysaccharide (LPS). LPS-mediated induction of Ccl17 in the hippocampus was dependent on local tumor necrosis factor (TNF) signaling, whereas upregulation of Ccl22 required granulocyte-macrophage colony-stimulating factor (GM-CSF). CCL17 deficiency resulted in a diminished microglia density under homeostatic and inflammatory conditions. Further, microglia from naïve Ccl17-deficient mice possessed a reduced cellular volume and a more polarized process tree as assessed by computer-assisted imaging analysis. Regarding the overall branching, cell surface area, and total tree length, the morphology of microglia from naïve Ccl17-deficient mice resembled that of microglia from wild-type mice after LPS stimulation. In line, electrophysiological recordings indicated that CCL17 downmodulates basal synaptic transmission at CA3-CA1 Schaffer collaterals in acute slices from naïve but not LPS-treated animals. Taken together, our data identify CCL17 as a homeostatic and inducible neuromodulatory chemokine affecting the presence and morphology of microglia and synaptic transmission in the hippocampus.


Assuntos
Quimiocina CCL17/metabolismo , Hipocampo/imunologia , Neuroimunomodulação/fisiologia , Neurônios/imunologia , Animais , Quimiocina CCL17/genética , Quimiocina CCL22/metabolismo , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Homeostase/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/imunologia , Microglia/patologia , Monócitos/imunologia , Monócitos/patologia , Neurônios/patologia , Receptores CCR4/metabolismo , Transmissão Sináptica/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
7.
BMC Genomics ; 19(1): 194, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29703139

RESUMO

BACKGROUND: The murine discs large homolog 2 (DLG2; post synaptic density 93 (PSD-93); Chapsyn-110) is a member of the membrane-associated guanylate kinase (MAGUK) protein family involved in receptor assembly and associated with signaling enzymes on cell membranes. In neurons, DLG2 protein isoforms derived from alternatively spliced transcripts have been described to bind to NMDA (N-methyl-aspartate) receptors and K channels and to mediate clustering of these channels in the postsynaptic membrane. In myeloid cells of the immune system, such as dendritic cells (DCs), a lack of data exists on the expression or function of DLG2. In cDNA microarray transcriptome analyses, we found Dlg2 highly expressed in a subpopulation of plasmacytoid DCs (pDCs) stimulated to produce type I interferons (IFNs) such as IFNß. RESULTS: Using RACE- and RT-PCR as well as immunoprecipitation followed by Western blotting we characterised the differential expression of the Dlg2 splice variants in IFNß-producing pDCs. Besides Dlg2É£ this cell population expressed a novel short Dlg2η transcript we termed Dlg2η3. Our expression data were integrated into information from genome databases to obtain a novel and comprehensive overview of the mouse Dlg2 gene architecture. To elucidate the intracellular localisation pattern of protein isoforms, ectopical expression analysis of fluorescently tagged DLG2 splice variants was performed. Here we found an enrichment of the larger isoform DLG2α1 at the plasma membrane while the newly identified shorter (DLG2η) isoform as well as DLG2É£ were equally distributed throughout the cytoplasm. Additionally, DLG2η was also found in the nucleus. Analysis of Dlg2-knockout mice previously generated by deleting exon 9 surprisingly revealed that the protein for the novel DLG2η isoform was still expressed in the brain and in bone marrow-derived pDCs from mice carrying the homozygous deletion (Dlg2 ΔE9/ΔE9 ). CONCLUSION: We describe a novel splice variant of the mouse Dlg2 gene termed Dlg2η and define the differential expression pattern of DLG2 isoforms in IFNß-producing pDCs. The presence of DLG2η protein in the CNS of Dlg2 ΔE9/ΔE9 mice might influence the phenotype of these mice and has to be taken into account in the interpretation of results regarding the functional role of DLG2 in neuronal postsynaptic membranes.


Assuntos
Processamento Alternativo , Células Dendríticas/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Interferon beta/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Medula Óssea/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Dendríticas/citologia , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/metabolismo , Regulação para Cima
8.
J Immunol ; 196(11): 4447-51, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183572

RESUMO

Type I IFNs are critical in initiating protective antiviral immune responses, and plasmacytoid dendritic cells (pDCs) represent a major source of these cytokines. We show that only few pDCs are capable of producing IFN-ß after virus infection or CpG stimulation. Using IFNß/YFP reporter mice, we identify these IFN-ß-producing cells in the spleen as a CCR9(+)CD9(-) pDC subset that is localized exclusively within the T/B cell zones. IFN-ß-producing pDCs exhibit a distinct transcriptome profile, with higher expression of genes encoding cytokines and chemokines, facilitating T cell recruitment and activation. These distinctive characteristics of IFN-ß-producing pDCs are independent of the type I IFNR-mediated feedback loop. Furthermore, IFN-ß-producing pDCs exhibit enhanced CCR7-dependent migratory properties in vitro. Additionally, they effectively recruit T cells in vivo in a peritoneal inflammation model. We define "professional type I IFN-producing cells" as a distinct subset of pDCs specialized in coordinating cellular immune responses.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon beta/genética , Baço/citologia , Baço/imunologia , Transcriptoma , Animais , Interferon beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais
9.
J Biol Chem ; 291(37): 19517-31, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27474745

RESUMO

Cerebral malaria is a severe and often fatal complication of Plasmodium falciparum infection. It is characterized by parasite sequestration, a breakdown of the blood-brain barrier, and a strong inflammation in the brain. We investigated the role of the cannabinoid receptor 2 (CB2), an important modulator of neuroinflammatory responses, in experimental cerebral malaria (ECM). Strikingly, mice with a deletion of the CB2-encoding gene (Cnr2(-/-)) inoculated with Plasmodium berghei ANKA erythrocytes exhibited enhanced survival and a diminished blood-brain barrier disruption. Therapeutic application of a specific CB2 antagonist also conferred increased ECM resistance in wild type mice. Hematopoietic derived immune cells were responsible for the enhanced protection in bone marrow (BM) chimeric Cnr2(-/-) mice. Mixed BM chimeras further revealed that CB2-expressing cells contributed to ECM development. A heterogeneous CD11b(+) cell population, containing macrophages and neutrophils, expanded in the Cnr2(-/-) spleen after infection and expressed macrophage mannose receptors, arginase-1 activity, and IL-10. Also in the Cnr2(-/-) brain, CD11b(+) cells that expressed selected anti-inflammatory markers accumulated, and expression of inflammatory mediators IFN-γ and TNF-α was reduced. Finally, the M2 macrophage chemokine CCL17 was identified as an essential factor for enhanced survival in the absence of CB2, because CCL17 × Cnr2 double-deficient mice were fully susceptible to ECM. Thus, targeting CB2 may be promising for the development of alternative treatment regimes of ECM.


Assuntos
Barreira Hematoencefálica/imunologia , Quimiocina CCL17/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Receptor CB2 de Canabinoide/imunologia , Animais , Arginase/genética , Arginase/imunologia , Barreira Hematoencefálica/parasitologia , Barreira Hematoencefálica/patologia , Quimiocina CCL17/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Interleucina-10/genética , Interleucina-10/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Malária Cerebral/genética , Malária Cerebral/patologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Receptor CB2 de Canabinoide/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
10.
Brain Behav Immun ; 66: 382-393, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28642092

RESUMO

The CC chemokine ligand 17 (CCL17) and its cognate CC chemokine receptor 4 (CCR4) are known to control leukocyte migration, maintenance of TH17 cells, and regulatory T cell (Treg) expansion in vivo. In this study we characterized the expression and functional role of CCL17 in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Using a CCL17/EGFP reporter mouse model, we could show that CCL17 expression in the CNS can be found in a subset of classical dendritic cells (DCs) that immigrate into the CNS during the effector phase of MOG-induced EAE. CCL17 deficient (CCL17-/-) mice exhibited an ameliorated disease course upon MOG-immunization, associated with reduced immigration of IL-17 producing CD4+ T cells and peripheral DCs into the CNS. CCL17-/- DCs further showed equivalent MHC class II and costimulatory molecule expression and an equivalent capacity to secrete IL-23 and induce myelin-reactive TH17 cells when compared to wildtype DCs. In contrast, their transmigration in an in vitro model of the blood-brain barrier was markedly impaired. In addition, peripheral Treg cells were enhanced in CCL17-/- mice at peak of disease pointing towards an immunoregulatory function of CCL17 in EAE. Our study identifies CCL17 as a unique modulator of EAE pathogenesis regulating DC trafficking as well as peripheral Treg cell expansion in EAE. Thus, CCL17 operates at distinct levels and on different cell subsets during immune response in EAE, a property harboring therapeutic potential for the treatment of CNS autoimmunity.


Assuntos
Quimiocina CCL17/metabolismo , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Movimento Celular , Quimiocina CCL17/genética , Feminino , Interleucina-23/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/imunologia , Baço/fisiopatologia , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo
11.
J Psychiatry Neurosci ; 42(5): 343-352, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28606245

RESUMO

BACKGROUND: Identifying reliable trait markers of familial risk for major depressive disorder (MDD) is a challenge in translational psychiatric research. In individuals with acute MDD, dysfunctional connectivity patterns of prefrontal areas have been shown repeatedly. However, it has been unclear in which neuronal networks functional alterations in individuals at familial risk for MDD might be present and to what extent they resemble findings previously reported in those with acute MDD. METHODS: We investigated differences in blood oxygen level-dependent (BOLD) response of the medial orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) to aversive stimuli between acute MDD and familial risk for the disorder in healthy first-degree relatives of acutely depressed patients with MDD (HC-FH+), healthy age- and sex-matched controls without any family history of depression (HC-FH-), and acutely depressed patients with MDD with (MDD-FH+) and without a family history of depression (MDD-FH-) during a frequently used emotional face-matching paradigm. Analyses of task-specific network connectivity were conducted in terms of psychophysiological interactions (PPI). RESULTS: The present analysis included a total of 100 participants: 25 HC-FH+, 25 HC-FH-, 25 MDD-FH+ and 25 MDD-FH-. Patients with MDD exhibited significantly increased activation in the medial OFC to negative stimuli irrespective of familial risk status, whereas healthy participants at familial risk and patients with MDD alike showed significant hypoactivation in the DLPFC compared with healthy participants without familial risk. The PPI analyses revealed significantly enhanced task-specific coupling between the medial OFC and differing cortical areas in individuals with acute MDD and those with familial risk for the disorder. LIMITATIONS: The main limitation of our study is its cross-sectional design. CONCLUSION: Whereas hypoactivation during negative emotion processing in the DLPFC appears as a common feature in both healthy high-risk individuals and acutely depressed patients, activation patterns of the medial OFC and its underlying connectivity seem to distinguish familial risk from acute disorder.


Assuntos
Transtorno Depressivo Maior/fisiopatologia , Emoções/fisiologia , Família , Predisposição Genética para Doença , Córtex Pré-Frontal/fisiopatologia , Adulto , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Estudos Transversais , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Córtex Pré-Frontal/diagnóstico por imagem
12.
Int J Mol Sci ; 18(11)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099057

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). It affects more than two million people worldwide, mainly young adults, and may lead to progressive neurological disability. Chemokines and their receptors have been shown to play critical roles in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a murine disease model induced by active immunization with myelin proteins or transfer of encephalitogenic CD4⁺ T cells that recapitulates clinical and neuropathological features of MS. Chemokine ligand-receptor interactions orchestrate leukocyte trafficking and influence multiple pathophysiological cellular processes, including antigen presentation and cytokine production by dendritic cells (DCs). The C-C class chemokines 17 (CCL17) and 22 (CCL22) and their C-C chemokine receptor 4 (CCR4) have been shown to play an important role in homeostasis and inflammatory responses. Here, we provide an overview of the involvement of CCR4 and its ligands in CNS autoimmunity. We review key clinical studies of MS together with experimental studies in animals that have demonstrated functional roles of CCR4, CCL17, and CCL22 in EAE pathogenesis. Finally, we discuss the therapeutic potential of newly developed CCR4 antagonists and a humanized anti-CCR4 antibody for treatment of MS.


Assuntos
Doenças Autoimunes do Sistema Nervoso/imunologia , Autoimunidade , Quimiocina CCL17/imunologia , Quimiocina CCL22/imunologia , Receptores CCR4/imunologia , Animais , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/patologia , Autoimunidade/imunologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Quimiocina CCL17/análise , Quimiocina CCL22/análise , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Terapia de Alvo Molecular/métodos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Receptores CCR4/análise
13.
Eur J Immunol ; 44(2): 500-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24136200

RESUMO

The DC-derived chemokine CCL17, a ligand of CCR4, has been shown to promote various inflammatory diseases such as atopic dermatitis, atherosclerosis, and inflammatory bowel disease. Under steady-state conditions, and even after systemic stimulation with LPS, CCL17 is not expressed in resident splenic DCs as opposed to CD8α⁻CD11b⁺ LN DCs, which produce large amounts of CCL17 in particular after maturation. Upon systemic NKT cell activation through α-galactosylceramide stimulation however, CCL17 can be upregulated in both CD8α⁻ and CD8α⁺ splenic DC subsets and enhances cross-presentation of exogenous antigens. Based on genome-wide expression profiling, we now show that splenic CD11b⁺ DCs are susceptible to IFN-γ-mediated suppression of CCL17, whereas LN CD11b⁺CCL17⁺ DCs downregulate the IFN-γR and are much less responsive to IFN-γ. Under inflammatory conditions, particularly in the absence of IFN-γ signaling in IFN-γRKO mice, CCL17 expression is strongly induced in a major proportion of splenic DCs by the action of GM-CSF in concert with IL-4. Our findings demonstrate that the local cytokine milieu and differential cytokine responsiveness of DC subsets regulate lymphoid organ specific immune responses at the level of chemokine expression.


Assuntos
Diferenciação Celular/imunologia , Microambiente Celular/imunologia , Células Dendríticas/metabolismo , Interferon gama/metabolismo , Interleucina-4/metabolismo , Receptores de Interferon/metabolismo , Baço/metabolismo , Animais , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Quimiocina CCL17/imunologia , Quimiocina CCL17/metabolismo , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interferon gama/imunologia , Interleucina-4/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interferon/deficiência , Receptores de Interferon/imunologia , Baço/imunologia , Receptor de Interferon gama
14.
Int J Neuropsychopharmacol ; 19(3): pyv103, 2015 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-26364276

RESUMO

BACKGROUND: There is an ongoing search for biomarkers in psychiatry, for example, as diagnostic tools or predictors of treatment response. The neurotrophic factor S100 calcium binding protein B (S100B) has been discussed as a possible predictor of antidepressant response in patients with major depression, but also as a possible biomarker of an acute depressive state. The aim of the present study was to study the association of serum S100B levels with antidepressant treatment response and depression severity in melancholically depressed inpatients. METHODS: After a wash-out period of 1 week, 40 inpatients with melancholic depression were treated with either venlafaxine or imipramine. S100B levels and Hamilton Depression Rating Scale (HAM-D) scores were assessed at baseline, after 7 weeks of treatment, and after 6 months. RESULTS: Patients with high S100B levels at baseline showed a markedly better treatment response defined as relative reduction in HAM-D scores than those with low baseline S100B levels after 7 weeks (P=.002) and 6 months (P=.003). In linear regression models, S100B was a significant predictor for treatment response at both time points. It is of interest to note that nonresponders were detected with a predictive value of 85% and a false negative rate of 7.5%. S100B levels were not associated with depression severity and did not change with clinical improvement. CONCLUSIONS: Low S100B levels predict nonresponse to venlafaxine and imipramine with high precision. Future studies have to show which treatments are effective in patients with low levels of S100B so that this biomarker will help to reduce patients' burden of nonresponding to frequently used antidepressants.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo/sangue , Transtorno Depressivo/tratamento farmacológico , Imipramina/uso terapêutico , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Cloridrato de Venlafaxina/uso terapêutico , Adulto , Idoso , Biomarcadores/sangue , Análise Química do Sangue , Transtorno Depressivo/diagnóstico , Reações Falso-Negativas , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Prognóstico , Escalas de Graduação Psiquiátrica , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
15.
Brain Behav Immun ; 44: 48-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25150007

RESUMO

Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRß genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/ß ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients <28 years showed two subgroups: a subgroup with a severe course of depression (recurrent type, onset <15 years) - additionally characterized by panic/arousal symptoms and childhood trauma - that had a monocyte gene expression similar to HC, and a second subgroup with a milder course of the disorder (73% first episode depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older.


Assuntos
Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Expressão Gênica , Inflamação/genética , Monócitos/fisiologia , Adulto , Fatores Etários , Transtorno Depressivo Maior/complicações , Feminino , Humanos , Inflamação/complicações , Masculino , Pessoa de Meia-Idade , Receptores de Glucocorticoides/genética , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 109(10): 3897-902, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22355103

RESUMO

Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4(-/-) mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4(-/-) mice, indicating that CCR4(+) DCs are cellular mediators of EAE development. Mechanistically, CCR4(-/-) DCs were less efficient in GM-CSF and IL-23 production and also T(H)-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4(-/-) mice, whereas intracerebral inoculation using IL-23(-/-) DCs or GM-CSF(-/-) DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type.


Assuntos
Células Dendríticas/citologia , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-23/metabolismo , Receptores CCR4/fisiologia , Animais , Células da Medula Óssea/citologia , Encefalomielite Autoimune Experimental/metabolismo , Inflamação , Ligantes , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Receptores CCR4/metabolismo
17.
Basic Res Cardiol ; 109(4): 425, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24980781

RESUMO

Ischemic heart disease is associated with inflammation, interstitial fibrosis and ventricular dysfunction prior to the development of heart failure. Endocannabinoids and the cannabinoid receptor CB2 have been claimed to be involved, but their potential role in cardioprotection is not well understood. We therefore explored the role of the cannabinoid receptor CB2 during the initial phase of ischemic cardiomyopathy development prior to the onset of ventricular dysfunction or infarction. Wild type and CB2-deficient mice underwent daily brief, repetitive ischemia and reperfusion (I/R) episodes leading to ischemic cardiomyopathy. The relevance of the endocannabinoid-CB2 receptor axis was underscored by the finding that CB2 was upregulated in ischemic wild type cardiomyocytes and that anandamide level was transiently increased during I/R. CB2-deficient mice showed an increased rate of apoptosis, irreversible loss of cardiomyocytes and persistent left ventricular dysfunction 60 days after the injury, whereas wild type mice presented neither morphological nor functional defects. These defects were due to lack of cardiomyocyte protection mechanisms, as CB2-deficient hearts were in contrast to controls unable to induce switch in myosin heavy chain isoforms, antioxidative enzymes and chemokine CCL2 during repetitive I/R. In addition, a prolonged inflammatory response and adverse myocardial remodeling were found in CB2-deficient hearts because of postponed activation of the M2a macrophage subpopulation. Therefore, the endocannabinoid-CB2 receptor axis plays a key role in cardioprotection during the initial phase of ischemic cardiomyopathy development.


Assuntos
Cardiomiopatias/prevenção & controle , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais , Animais , Apoptose , Ácidos Araquidônicos/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Feminino , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB2 de Canabinoide/deficiência , Receptor CB2 de Canabinoide/genética , Fatores de Tempo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular
18.
Proc Natl Acad Sci U S A ; 108(27): 11256-61, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690345

RESUMO

Brain aging is associated with cognitive decline that is accompanied by progressive neuroinflammatory changes. The endocannabinoid system (ECS) is involved in the regulation of glial activity and influences the progression of age-related learning and memory deficits. Mice lacking the Cnr1 gene (Cnr1(-/-)), which encodes the cannabinoid receptor 1 (CB1), showed an accelerated age-dependent deficit in spatial learning accompanied by a loss of principal neurons in the hippocampus. The age-dependent decrease in neuronal numbers in Cnr1(-/-) mice was not related to decreased neurogenesis or to epileptic seizures. However, enhanced neuroinflammation characterized by an increased density of astrocytes and activated microglia as well as an enhanced expression of the inflammatory cytokine IL-6 during aging was present in the hippocampus of Cnr1(-/-) mice. The ongoing process of pyramidal cell degeneration and neuroinflammation can exacerbate each other and both contribute to the cognitive deficits. Deletion of CB1 receptors from the forebrain GABAergic, but not from the glutamatergic neurons, led to a similar neuronal loss and increased neuroinflammation in the hippocampus as observed in animals lacking CB1 receptors in all cells. Our results suggest that CB1 receptor activity on hippocampal GABAergic neurons protects against age-dependent cognitive decline by reducing pyramidal cell degeneration and neuroinflammation.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Animais , Encéfalo/citologia , Contagem de Células , Feminino , Expressão Gênica , Hipocampo/citologia , Hipocampo/fisiologia , Interleucina-6/genética , Interleucina-6/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/genética , Convulsões/patologia , Convulsões/fisiopatologia , Ácido gama-Aminobutírico/fisiologia
19.
J Immunol ; 186(8): 4845-52, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21398605

RESUMO

Filarial parasites have to trespass many barriers to successfully settle within their mammalian host, which is equipped with mechanical borders and complex weaponry of an evolved immune system. However, little is known about mechanisms of early local events in filarial infections. In this study, bone marrow-derived dendritic cells not only upregulated activation markers CD40 and CD80 upon in vitro stimulation with filarial extracts, but also secreted CCL17, a chemokine known to be produced upon microbial challenge. Mice deficient for CCL17 had an up to 4-fold higher worm burden compared with controls by day 10 of infection with the murine filaria Litomosoides sigmodontis. Also, numbers of mast cells (MCs) invading the skin and degranulation were significantly increased, which was associated with enhanced vascular permeability and larval establishment. This phenotype was reverted by inhibition of MC degranulation with disodium cromoglycate or by blockade of histamine. In addition, we showed that CCL17-mediated vascular permeability was dependent on the presence of Wolbachia endosymbionts and TLR2. Our findings reveal that CCL17 controls filarial larval entry by limiting MC-dependent vascular permeability.


Assuntos
Quimiocina CCL17/imunologia , Filariose/imunologia , Filarioidea/imunologia , Mastócitos/imunologia , Animais , Antígenos de Helmintos/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Permeabilidade Capilar/imunologia , Degranulação Celular/imunologia , Células Cultivadas , Quimiocina CCL17/genética , Quimiocina CCL17/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Filariose/genética , Filariose/parasitologia , Filarioidea/microbiologia , Filarioidea/fisiologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Parasita/imunologia , Larva/imunologia , Larva/microbiologia , Larva/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Mastócitos/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Microscopia Confocal , Pele/imunologia , Pele/metabolismo , Fatores de Tempo , Wolbachia/imunologia
20.
Front Psychiatry ; 13: 960905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226111

RESUMO

Anorexia nervosa (AN) is a severe eating disorder characterized by excessive weight loss and lack of recognition of the seriousness of the current low body weight. Individuals with AN frequently exhibit an enhanced inflammatory state and altered blood levels of cytokines and chemokines. However, the expression of chemokine receptors in AN and the association with body composition parameters and treatment effects are still unknown. In this study, we examined the expression of CCR4, CCR6, CXCR3, and CXCR4 on peripheral blood T cells in female adolescents with AN before (T0, n = 24) and after 6 weeks of multimodal therapy (T1, n = 20). We also investigated their value to predict body mass index (BMI) and fat mass index (FMI) at baseline. Using multi-parameter flow cytometry, we found increased expression of CCR4, CXCR3, and CXCR4, but not CCR6, on CD4+ T cells in AN at T0 when compared to healthy controls (HC, n = 20). At T1, CXCR3 and CXCR4 expression decreased in AN. We found a close link between CCR4, CCR6 and CXCR4 expression and the adolescent mental health status in the study cohort as determined by the Strengths and Difficulties Questionnaire (SDQ). Specifically, CXCR4 expression correlated positively with emotional symptoms and peer relationship problems, as well as with the total sum score of the SDQ. In addition, CXCR4 expression on CD4+ T cells was a significant predictor of BMI and FMI in female adolescents. Our findings that CXCR4 expression on T cells is altered in adolescents with AN and predicts body composition parameters in adolescents suggest an impact of this chemokine receptor in the pathogenesis of AN.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa