RESUMO
The primary impetus of therapeutic cell encapsulation in the past several decades has been to broaden the options for donor cell sources by countering against immune-mediated rejection. However, another significant advantage of encapsulation is to provide donor cells with physiologically relevant cues that become compromised in disease. The advances in biomaterial design have led to the fundamental insight that cells sense and respond to various signals encoded in materials, ranging from biochemical to mechanical cues. The biomaterial design for cell encapsulation is becoming more sophisticated in controlling specific aspects of cellular phenotypes and more precise down to the single cell level. This recent progress offers a paradigm shift by designing single cell-encapsulating materials with predefined cues to precisely control donor cells after transplantation.
Assuntos
Materiais Biocompatíveis , Encapsulamento de Células , Humanos , BiologiaRESUMO
Severe skeletal muscle injuries are a lifelong trauma with limited medical solutions. Significant progress has been made in developing in vitro surrogates for treating such trauma. However, more attention is needed when translating these approaches to the clinic. In this review, we survey the potential of tissue-engineered surrogates in promoting muscle healing, by critically analyzing data from recent preclinical models. The therapeutic advantages provided by a combination of different biomaterials, cell types, and biochemical mediators are discussed. Current therapies on muscle healing are also summarized, emphasizing their main advantages and drawbacks. We also discuss previous and ongoing clinical trials as well as highlighting future directions for the field.
Assuntos
Músculo Esquelético , Engenharia Tecidual , Materiais Biocompatíveis/metabolismo , RegeneraçãoRESUMO
BACKGROUND: volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery. METHODS: in this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs). RESULTS: in vitro, hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31+vessels) and neoinnervation (ß-III tubulin+bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density ofα-SA+and MYH7+cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels ofα-SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM. CONCLUSIONS: taken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.
Assuntos
Polissacarídeos Bacterianos , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Humanos , Citocinas , MúsculosRESUMO
The treatment of skeletal muscle defects is still a topic of noteworthy concern since surgical intervention is not capable of recovering muscle function. Herein, we propose myoblasts laden in laminin-inspired biofunctionalized gellan gum hydrogels as promising tissue-engineered skeletal muscle surrogates. Gellan gum-based hydrogels were developed by combining native gellan gum (GG) and GG tethered with laminin-derived peptides (CIKVAVS (V), KNRLTIELEVRTC (T) or RKRLQVQLSIRTC (Q)), using different polymer content (0.75%-1.875%). Hydrogels were characterized in terms of compressive modulus, molecules trafficking, and C2C12 adhesion. Hydrogels with higher polymeric content (1.125%-1.875%) showed higher stiffness whereas hydrogels with lower polymer content (0.75%-1.125%) showed higher fluorescein isothiocyanate-dextran molecules diffusion. Cell spreading was achieved regardless of the laminin-derived peptide but preferred in hydrogels with higher polymer content (1.125%-1.875%). Taken together, hydrogels with 1.125% of polymer content were selected for printability analysis. GG-based inks showed a non-newtonian, shear-thinning, and thixotropic behavior suitable for printing. Accordingly, all inks were printable, but inks tethered with T and Q peptides presented some signs of clogging. Cell viability was affected after printing but increased after 7 days of culture. After 7 days, cells were spreading but not showing significant signs of cell-cell communications. Therefore, cell density was increased, thus, myocytes loaded in V-tethered GG-based inks showed higher cell-cell communication, spreading morphology, and alignment 7, 14 days post-printing. Overall, myoblasts laden in laminin-inspired biofunctionalized GG-based hydrogels are a promising skeletal muscle surrogate with the potential to be used as in vitro model or explored for further in vivo applications.
Assuntos
Bioimpressão , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Laminina/farmacologia , Peptídeos/farmacologia , Polímeros , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Engenharia TecidualRESUMO
Moderate muscular injuries that exceed muscular tissue's auto-healing capacity are still a topic of noteworthy concern. Tissue engineering appeared as a promising therapeutic strategy capable of overcoming this unmet clinical need. To attain such goal, herein we propose an in situ-crosslinking gellan gum (GG)-based hydrogel tethered with a skeletal muscle-inspired laminin-derived peptide RKRLQVQLSIRTC(Q) and encapsulated with skeletal muscle cells (SMCs). Pre-hydrogel solutions presented decreasing shear viscosity with increasing shear rate and shear stress, and required low forces for extrusion, validating their injectability. The GGDVS hydrogel was functionalized with Q-peptide with 30% of efficiency. C2C12 were able to adhere to the developed hydrogel, remained living and spreading 7 days post-encapsulation. Q-peptide release studies indicated that 25% of the unbound peptide can be released from the hydrogels up to 7 days, dependent on the hydrogel formulation. Treatment of a chemically-induced muscular lesion in mice with an injection of C2C12-laden hydrogels improved myogenesis, primarily promoted by the C2C12. In accordance, a high density of myoblasts (α-SA+ and MYH7+) were localized in tissues treated with the C2C12 (alone or encapsulated in the hydrogel). α-SA protein levels were significantly increased 8 weeks post-treatment with C2C12-laden hydrogels and MHC protein levels were increased in all experimental groups 4 weeks post-treatment, in relation to the SHAM. Neovascularization and neoinnervation was also detected in the defects. Altogether, this study indicates that C2C12-laden hydrogels hold great potential for skeletal muscle regeneration. STATEMENT OF SIGNIFICANCE: We developed an injectable gellan gum-based hydrogel for delivering C2C12 into localized myopathic model. The gellan gum was biofunctinalized with laminin-derived peptide to mimic the native muscular ECM. In addition, hydrogel was physically tuned to mimic the mechanical properties of native tissue. To the best of our knowledge, this formula was used for the first time under the context of skeletal muscle tissue regeneration. The injectability of the developed hydrogel provided non-invasive administration method, combined with a reliable microenvironment that can host C2C12 with nominal inflammation, indicated by the survival and adhesion of encapsulated cells post-injection. The treatment of skeletal muscle defect with the cell-laden hydrogel approach significantly enhanced the regeneration of localized muscular trauma.
Assuntos
Hidrogéis , Laminina , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Laminina/farmacologia , Camundongos , Músculo Esquelético , Mioblastos , Peptídeos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Engenharia Tecidual/métodosRESUMO
The efficacy of current therapies for skeletal muscle disorders/injuries are limited urging the need for new treatments. Skeletal muscle tissue engineered platforms represent a promising tool to shed light on the pathophysiology of skeletal muscle disorders/injuries and to investigate the efficacy of new therapies. Herein, we developed a skeletal muscle platform composed of aligned and differentiated myoblasts on micropatterned gellan gum (GG)-based hydrogels tailored with a laminin-derived peptide. To this aim, the binding of murine skeletal muscle cells (C2C12) to different laminin-derived peptides (CIKVAVS (V), KNRLTIELEVRTC (T), and RKRLQVQLSIRTC (Q)) and the binding of laminin-derived peptides to chemically functionalized GG was studied. C2C12-binding to peptide V, T and Q was 10%, 48% and 25%, whereas the peptide tethering to GG was 60%, 40% and 31%, respectively. Peptide-biofunctionalized hydrogels prepared with different polymer content showed different mechanics and peptide exposure at hydrogel surface. Cellular adhesion was detected in all hydrogel formulations, but spreading and differentiation was only promoted in peptide Q-biofunctionalized hydrogels and preferably in stiffer hydrogels. Myoblast alignment was promoted in micropatterned hydrogel surfaces. Overall, the engineered skeletal muscle herein proposed can be further explored as a platform to better understand skeletal muscle disorders/injuries and to screen new therapies.