RESUMO
The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.
Assuntos
Medula Óssea , Doenças do Sistema Nervoso , Crânio , Animais , Humanos , Camundongos , Medula Óssea/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Crânio/citologia , Crânio/diagnóstico por imagemRESUMO
Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.
Assuntos
Doença de Alzheimer , Proteoma , Camundongos , Humanos , Animais , Proteoma/análise , Proteômica/métodos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Espectrometria de Massas , Placa AmiloideRESUMO
SUMMARY: Spatial omics technologies are increasingly leveraged to characterize how disease disrupts tissue organization and cellular niches. While multiple methods to analyze spatial variation within a sample have been published, statistical and computational approaches to compare cell spatial organization across samples or conditions are mostly lacking. We present GraphCompass, a comprehensive set of omics-adapted graph analysis methods to quantitatively evaluate and compare the spatial arrangement of cells in samples representing diverse biological conditions. GraphCompass builds upon the Squidpy spatial omics toolbox and encompasses various statistical approaches to perform cross-condition analyses at the level of individual cell types, niches, and samples. Additionally, GraphCompass provides custom visualization functions that enable effective communication of results. We demonstrate how GraphCompass can be used to address key biological questions, such as how cellular organization and tissue architecture differ across various disease states and which spatial patterns correlate with a given pathological condition. GraphCompass can be applied to various popular omics techniques, including, but not limited to, spatial proteomics (e.g. MIBI-TOF), spot-based transcriptomics (e.g. 10× Genomics Visium), and single-cell resolved transcriptomics (e.g. Stereo-seq). In this work, we showcase the capabilities of GraphCompass through its application to three different studies that may also serve as benchmark datasets for further method development. With its easy-to-use implementation, extensive documentation, and comprehensive tutorials, GraphCompass is accessible to biologists with varying levels of computational expertise. By facilitating comparative analyses of cell spatial organization, GraphCompass promises to be a valuable asset in advancing our understanding of tissue function in health and disease..
Assuntos
Software , Humanos , Proteômica/métodos , Biologia Computacional/métodos , Genômica/métodos , Animais , Transcriptoma , Análise de Célula Única/métodosRESUMO
Trichodinids are peritrichous ciliated protozoa that affect both wild and cultured fishes. Several Trichodina species have low host specificity and are morphologically distinct, facilitating their identification based primarily on the presence of adhesive discs and the number of attached denticles. A trichodinid species named Trichodina compacta was first reported by Van As and Basson (1989) (Protozoa: Ciliophora: Peritrichia). However, in trichodinid infestations, morphological characteristics are insufficient for identifying the infesting species. Therefore, molecular and phylogenetic analyses are considered to be promising and useful tools for identifying the infesting species. This study aimed to achieve the molecular identification of a trichodinid infestation in Nile tilapia and to construct the phylogenetic relationships between the identified species and other peritrichous parasites. Moreover, we also aimed to study the pathological and immunological impacts of trichodinids on fry tissue to improve our understanding of the immune responses of teleost fish to trichodinae parasitic infestations and develop a better control method. Here, we used molecular techniques to identify the isolated trichodina species as T. compacta and demonstrated that Trichodina infestation in Nile tilapia is associated with remarkable immunogenic and inflammatory responses (increased il-1ß expression and decreased il-8 and tgf-ß expression). These findings improve our understanding of the responses of teleost fish to trichodinid parasite infestation and will be helpful for the development of novel control strategies that reverse the inflammatory and immunogenic alterations that occur in infested fish.
Assuntos
Ciclídeos/imunologia , Ciclídeos/parasitologia , Doenças dos Peixes/parasitologia , Oligoimenóforos/classificação , Oligoimenóforos/genética , Animais , DNA de Protozoário/genética , DNA Ribossômico/genética , Egito , Brânquias/parasitologia , Especificidade de Hospedeiro , Interleucina-1beta/biossíntese , Interleucina-8/biossíntese , Oligoimenóforos/isolamento & purificação , Filogenia , RNA Ribossômico 18S/genética , Pele/parasitologia , Fator de Crescimento Transformador beta/biossínteseRESUMO
BACKGROUND AND AIM: Camels are a unique source of milk and meat, which helps recover from several diseases that affect humans worldwide. In Egypt, one of the great obstacles for this industry is tick-borne diseases. This study aimed to characterize blood parasite infections, such as Babesia (B.) bovis and Trypanosoma (T.) spp. in one-humped camel (Camelus dromedarius) (n=142) breeds in Halayeb and Shalateen, Egypt, through phylogenetic analysis. MATERIALS AND METHODS: The prevalence of B. bovis and Trypanosoma spp. was identified in camels using polymerase chain reaction (PCR) assays targeting the Rhoptry-Associated Protein-1 and internal transcribed spacer 1 genes, respectively. A nested PCR technique was conducted to detect B. bovis. At the same time, KIN multispecies PCR assay was employed to diagnose and classify trypanosome DNA in camels. RESULTS: B. bovis was detected in 4/142 camels with an infection rate of 2.81%. Sequencing and phylogenetic analyses revealed that the strain of B. bovis isolated from this population was closely related to strains isolated from Argentine, the United States, and Brazil. Moreover, Trypanosoma evansi was detected in 8/142 camels with an infection rate of 5.63%. Sequencing and phylogenetic analyses revealed that this isolated strain T. evansi was closely related to Trypanosoma theileri detected from cattle in Brazil. CONCLUSION: The obtained data indicated the existence of B. bovis and T. evansi in camels from two provinces of Egypt. The obtained findings have economic significance and reflect the importance of implementing effective prevention and control methods across Egypt to reduce the incidence of B. bovis and T. evansi in camels.
RESUMO
Objective. To determine what expert assessors value when making pass-fail decisions regarding pharmacy students based on summative data from objective structured clinical examinations (OSCE), and to determine the reliability of these judgments between multiple assessors. Methods. All assessment data from 10 exit-from-degree OSCE stations for seven borderline pharmacy students (determined by standard setting methods) and one control was given to three of eight assessors for review. Assessors determined an overall pass-fail decision based on their perception of graduate competency. Assessors were interviewed to determine their decision-making rationale. Intraclass correlation coefficients were used to calculate reliability between assessor judgments. Results. Expert consensus was achieved for three of the eight students, however, the assessors' decisions did not align with standard-setting results. The reliability of assessors' decisions was poor. Assessors focused on ability to make correct recommendations rather than on gathering information or providing follow-up advice. Global evaluations (including a student's communication skills) rarely influenced the assessors' decision-making. Conclusion. When faced with making pass-fail decisions for borderline students, the assessors focus on evaluating the same competencies in the students but differed in their expected performance levels of these competencies. Pass-fail decisions are primarily based on task-focused components instead of global components (eg, communication skills), despite that global components are weighted the same for scoring purposes.
Assuntos
Competência Clínica/normas , Avaliação Educacional/métodos , Tomada de Decisões , Educação em Farmácia , Humanos , Exame Físico , Estudantes de FarmáciaRESUMO
Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence.