Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 13500, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782281

RESUMO

Thermodynamics is built with the concept of equilibrium states. However, it is less clear how equilibrium thermodynamics emerges through the dynamics that follows the principle of quantum mechanics. In this paper, we develop a theory of quantum thermodynamics that is applicable for arbitrary small systems, even for single particle systems coupled with a reservoir. We generalize the concept of temperature beyond equilibrium that depends on the detailed dynamics of quantum states. We apply the theory to a cavity system and a two-level system interacting with a reservoir, respectively. The results unravels (1) the emergence of thermodynamics naturally from the exact quantum dynamics in the weak system-reservoir coupling regime without introducing the hypothesis of equilibrium between the system and the reservoir from the beginning; (2) the emergence of thermodynamics in the intermediate system-reservoir coupling regime where the Born-Markovian approximation is broken down; (3) the breakdown of thermodynamics due to the long-time non-Markovian memory effect arisen from the occurrence of localized bound states; (4) the existence of dynamical quantum phase transition characterized by inflationary dynamics associated with negative dynamical temperature. The corresponding dynamical criticality provides a border separating classical and quantum worlds. The inflationary dynamics may also relate to the origin of big bang and universe inflation. And the third law of thermodynamics, allocated in the deep quantum realm, is naturally proved.

2.
Sci Rep ; 9(1): 2363, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787390

RESUMO

The time evolution of the distribution and shareability of quantum coherence of a tripartite system in a non-Markovian environment is examined. The total coherence can be decomposed into various contributions, ranging from local, global bipartite and global tripartite, which characterize the type of state. We identify coherence revivals for non-Markovian systems for all the contributions of coherence. The local coherence is found to be much more robust under the environmental coupling due to an effective smaller coupling to the reservoir. This allows us to devise a characterization of a quantum state in terms of a coherence tuple on a multipartite state simply by examining various combinations of reservoir couplings. The effect of the environment on the shareability of quantum coherence, as defined using the monogamy of coherence, is investigated and found that the sign of the monogamy is a preserved quantity under the decoherence. We conjecture that the monogamy of coherence is a conserved property under local incoherent processes.

3.
Sci Rep ; 4: 6165, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145508

RESUMO

Leggett-Garg inequalities (LGI) test the correlations of a single system measured at different times. Violation of LGI implies either the absence of a realistic description of the system or the impossibility of measuring the system without disturbing it. We investigate the violation of the Leggett-Garg inequality for a two level system under decoherence in a non-Markovian dephasing environment. We discuss the non-Markovian dynamics of the violation of LGI at zero temperature and also at finite temperature for different structured environments. An enhanced quantum coherence is shown through the violation of Leggett-Garg inequality in the strong non-Markovian regime of the environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa