RESUMO
Toxicity induced by a high concentration of lead (Pb) can significantly decrease plant's growth, gas exchange, and yield attributes. It can also causes cancer in humans. The use of organic amendments, especially biochar, can alleviate Pb toxicity in different crops. The application of biochar can decrease the uptake of Pb by plant roots. However, the high pH of thermo-pyrolyzed biochar makes it an unfit amendment for high pH soils. As Pb is an acute toxin and its uptake in rice is a major issue, the current experiment was conducted to explore the efficacy of chemically produced acidified carbon (AC) to mitigate Pb toxicity in rice. Lead was introduced in concentrations of 0, 15, and 30 mg kg-1 soil in combination with 0, 0.5, and 1% AC, underground water (GW) and wastewater (WW) in rice plants. The addition of 1% AC significantly improved the plant height (52 and 7%), spike length (66 and 50%), 1000 grains weight (144 and 71%) compared to 0% AC under GW and WW irrigation, respectively at 30 mg Pb kg-1 soil (30 Pb) toxicity. Similar improvements in the photosynthetic rate, transpiration rate and stomatal conductance also validated the effectiveness of 1% AC over 0% AC. A significant decrease in electrolyte leakage and plant Pb concentration by application of 0.5 and 1% AC validates the effectiveness of these treatments for mitigating 30 Pb toxicity in rice compared to 0% AC under GW or WW irrigation. In conclusion, 1% AC is an effective amendment in alleviating Pb toxicity in rice irrigated with GW or WW at 30 Pb.
Assuntos
Água Subterrânea , Oryza , Poluentes do Solo , Carbono , Carvão Vegetal , Humanos , Chumbo/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Águas ResiduáriasRESUMO
The present study focused on investigating the effect of titanium dioxide nanoparticles (TiO2NPs) on rice (Oryza sativa L.) growth and changes in soil health in two contrasting soil textures (silt-loam and clay). Moreover, response of rice to different methods of TiO2NPs application and phosphorous fertilizer levels were also evaluated. For toxicity assessment, pot experiment was carried out. TiO2NPs (0, 500, 750 mg kg-1) were applied and plants were grown till vegetative stage. After harvesting, physiological parameters, stress assay, soil microbial and enzymatic activities were determined. Based on the results of toxicity study, impact of three methods of TiO2NPs application (foliar, irrigation, soil) and four phosphorous fertilizer levels (0, 10, 20, 40 mg kg-1) on rice growth were assessed. During the 1st phase, results showed an adverse effect of TiO2NPs on plant growth and soil microorganisms in both soil textures at 750 mg kg-1. The H2O2 production, lipid peroxidation and leaf membrane injury index were increased by 4.3-, 2.4-, and 1.9-folds in clay soil upon 750 mg kg-1 TiO2NPs application. Likewise, at the same level of TiO2NPs; microbial biomass, dehydrogenase, and respiration were decreased by 0.91-, 0.79-, and 0.78- folds respectively. In 2nd phase, maximum shoot length, biomass, phosphorous uptake and rice grain protein content were observed under application of TiO2NPs (500 mg kg-1) through irrigation method in combination with 40 mg P kg-1. However, 20 and 40 mg P kg-1 performed equally well upon TiO2NPs application and the results were not statistically significant. The results suggest that 750 mg kg-1 of TiO2NPs negatively affect plant growth and soil enzymatic activities. Moreover, combined application of TiO2NPs (500 mg kg-1) through irrigation and 20 mg P kg-1 is recommended to be the optimum for growth of rice plant.
Assuntos
Oryza/fisiologia , Fósforo/metabolismo , Poluentes do Solo/toxicidade , Titânio/metabolismo , Biomassa , Argila , Peróxido de Hidrogênio/metabolismo , Nanopartículas , Oryza/metabolismo , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Solo , Poluentes do Solo/análiseRESUMO
Chromium (Cr) is becoming a potential pollutant with the passage of time. Higher intake of Cr does not only affect the productivity of crops, but also the quality of food produced in Cr polluted soils. In the past, foliar application of Fe is widely studied regarding their potential to alleviate Cr toxicity. However, limited information is documented regarding the combined use of PGPR and foliar Fe. Therefore, the current study was conducted to screen Cr tolerant PGPR and examine effect of foliar Fe with and without Cr tolerant PGPR under Cr toxicity (50 and 100â¯mgâ¯kg-1) in maize (Zea mays) production. Out of 15, two Cr tolerant PGPR were screened, identified (Agrobacterium fabrum and Leclercia adecarboxylata) and inoculated with 500⯵M Fe. Results confirmed that Agrobacterium fabrum + 500 µM Fe performed significantly best in improving dry weight of roots and shoot, plant height, roots and shoot length and plant leaves in maize under Cr toxicity. A significant increase in chlorophyll a (51.5%), b (55.1%) and total (32.5%) validated the effectiveness of A. fabrum + 500 µM Fe to alleviate Cr toxicity. Improvement in intake of N (64.7%), P (70.0 and 183.3%), K (53.8% and 3.40-fold) in leaves and N (25.6 and 122.2%), P (25.6 and 122.2%), K (33.3% and 97.3%) in roots of maize at Cr50 and Cr100 confirmed that combined application of A. fabrum with 500⯵M Fe is a more efficacious approach for alleviation of Cr toxicity and fortification of Fe comparative to sole foliar application of 500⯵M Fe.
Assuntos
Agrobacterium/enzimologia , Carbono-Carbono Liases/metabolismo , Cromo/toxicidade , Enterobacteriaceae/enzimologia , Ferro/farmacologia , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Agrobacterium/efeitos dos fármacos , Clorofila A/metabolismo , Enterobacteriaceae/efeitos dos fármacos , Ferro/metabolismo , Paquistão , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologiaRESUMO
The violet-to-blue thermally activated delayed fluorescence (TADF) emitters were created employing several substituents based on 5,5-dimethyl-5,10-dihydropyrido [2,3-b][1,8] naphthyridine-diphenylsulphone (DMDHPN-DPS) called 1a via "CH/N" and "H/CN" substitutions at the diphenylsulphone acceptor (DPS) moiety. The parent compound 1a was selected from our former work after extensive research employing "CH/N" substitution on Dimethyl-acridine (DMAC) donor moiety. There is a little overlap amid the highest occupied molecular orbitals (HOMOs) and lowest un-occupied molecular orbitals (LUMOs) due to the distribution of HOMOs and LUMOs primarily on the DMDHPN donor and the DPS acceptor moieties, respectively. It resulted in a narrower energy gap (∆E ST) between the lowest singlet (S1) and triplet (T1) excited state. In nearly all derivatives, the steric hindrance results in a larger torsional angle (85°-98°) between the plane of the DMDHPN and the DPS moieties. The predicted ΔE ST values of the compounds with "H/CN" substitution were lower than those of the comparable "CH/N" substituents, demonstrating the superiority of the reversible inter-system crossing (RISC) from the T1 â S1 state. All derivatives have emission wavelengths (λ em) in the range of 357-449 nm. The LUMO â HOMO transition energies in the S1 states are lowered by the presence of -CN groups or -N = atoms at the ortho or meta sites of a DPS acceptor unit, causing the λ em values to red-shift. Furthermore, the λ em showed a greater red-shift as there were more-CN groups or -N = atoms. Three of the derivatives named 1b, 1g, and 1h, emit violet (394 nm, 399 nm, and 398 nm, respectively), while two others, 1f and 1i, emit blue shade (449 nm each) with reasonable emission intensity peak demonstrating that these derivatives are effective violet-to-blue TADF nominees. The lower ΔE ST value for derivative 1i (0.01 eV) with λ em values of 449 nm make this molecule the finest choice for blue TADF emitter amongst all the studied derivatives. We believe our research might lead to the development of more proficient blue TADF-OLEDs in the future.
RESUMO
The density functional theory (DFT) was applied for the first time to study the doping and co-doping of Ga and Zn metals on graphitic carbon nitride (g-C3N4). The doping of these metal impurities into g-C3N4 leads to a significant decrease in the bandgap energy. Moreover, the co-doping leads to even lower bandgap energy than either individual Zn or Ga-doped g-C3N4. The theoretical electronic and optical properties including the density of state (DOS), energy levels of the frontier orbital, excited state lifetime, and molecular electrostatic potential of the doped and co-doped g-C3N4 support their application in UV-visible light-based technologies. The quantum mechanical parameters (energy band gap, binding energy, exciton energy, softness, hardness) and dipole moment exhibit higher values (ranging from 1.36 to 4.94 D) compared to the bare g-C3N4 (0.29 D), indicating better solubility in the water solvent. The time-dependent DFT (TD-DFT) calculations showed absorption maxima in between the UV-Vis region (309-878 nm). Additionally, charge transfer characteristics, transition density matrix (TDM), excited state lifetime and light harvesting efficiency (LHE) were investigated. Overall, these theoretical studies suggest that doped and co-doped g-C3N4 are excellent candidates for electronic semiconductor devices, light-emitting diodes (LEDs), solar cells, and photodetectors.
Assuntos
Grafite , Catálise , Grafite/química , Luz , ZincoRESUMO
Heavy metals contamination is posing severe threat to the soil health and environmental sustainability. Application of industrial and sewage waste as irrigation and growing urbanization and agricultural industry is the main reason for heavy metals pollution. Therefore, the present study was planned to assess the influence of different irrigation sources such as industrial effluents, sewage wastewater, tube well water, and canal water on the soil physio-chemical, soil biological, and enzymatic characteristics. Results showed that sewage waste and industrial effluents affect the soil pH, organic matter, total organic carbon, and cation exchange capacity. The highest total nickel (383.71 mg kg-1), lead (312.46 mg kg-1), cadmium (147.75 mg kg-1), and chromium (163.64 mg kg-1) were recorded with industrial effluents application. Whereas, industrial effluent greatly reduced the soil microbial biomass carbon (SMB-C), soil microbial biomass nitrogen (SMB-N), soil microbial biomass phosphorus (SMB-P), and soil microbial biomass sulphur (SMB-S) in the winter season at sowing time. Industrial effluent and sewage waste inhibited the soil enzymes activities. For instance, the minimum activity of amidase, urease, alkaline-phosphatase, ß-glucosidase, arylsulphatase and dehydrogenase activity was noted with HMs contamination. The higher levels of metals accumulation was observed in vegetables grown in soil contaminated with untreated waste water and industrial effluent in comparison to soil irrigated with canal and tube well water. The mean increase in soil microbial parameters and enzyme activities was also observed in response to the change in season from winter to spring due to increase in soil mean temperature. The SMB-C, SMB-N, SMB-P and SMB-S showed significant positive correlation with soil enzymes (amidase, urease, alkaline-phosphatase, ß-glucosidase, arylsulphatase and dehydrogenase). The heavy metals accumulation in soil is toxic to microorganisms and inhibits enzyme functions critical for nutrient cycling and organic matter decomposition and can disrupt the delicate balance of soil ecosystem and may lead to long-term damage of soil biological health.
RESUMO
Mismanagement in foliar fertilizer application at different crop stages decreases the productivity of the crop. Likewise, higher application of phosphorus (P) beyond recommended application rates not only decrease zinc (Zn) uptake in rice but also increase fertilizer use cost. Inoculation of arbuscular mycorrhizae (AMF) may optimize the uptake of P and improve crops production via organic secretions. That's why the current study was conducted to examine the individual and coordinated effects of 0.5% Zn (0.5Zn) foliar spray (tillering (T) and/or panicle (P) initiation stage) and AMF application. Application of foliar 0.5Zn at tillering+panicle stage remained significantly better for significant enhancement in plant height, spike length, gas exchange attributes and total chlorophyll contents than control. A significant decrease in electrolyte leakage Also validated the effectiveness of treatment 0.5ZnT+P compared to control. Compared to control, the maximum increase in N (14.5 and 25.7%), P (42.1 and 33.3%), K (22.2 and 30.0%) and Zn (19.3 and 27.8%) accumulation was also found in 0.5ZnT+P, with and without AMF, respectively. In conclusion, 0.5ZnT+P with AMF is a better approach than sole application of Zn at tillering or panicle initiation stages. Nevertheless, more investigations are suggested at field level under variable climatic zones to confirm the effectiveness of 0.5ZnT+P with AMF for improvement in rice growth and production.
Assuntos
Micorrizas , Oryza , Fertilizantes , Nutrientes , Zinco/farmacologiaRESUMO
Toxicity induced by heavy metals deteriorates soil fertility status. It also adversely affects the growth and yield of crops. These heavy metals become part of the food chain when crops are cultivated in areas where heavy metals are beyond threshold limits. Cadmium (Cd) and nickel (Ni) are considered the most notorious ones among different heavy metals. The high water solubility of Cd made it a potential toxin for plants and their consumers. Accumulation of Ni in plants, leaves, and fruits also deteriorates their quality and causes cancer in humans when such a Ni-contaminated diet is used regularly. Both Cd and Ni also compete with essential nutrients of plants, making the fertility status of soil poor. To overcome this problem, the use of activated carbon biochar can play a milestone role. In the recent past application of activated carbon biochar is gaining more and more attention. Biochar sorb the Cd and Ni and releases essential micronutrients that are part of its structure. Many micropores and high cation exchange capacity make it the most acceptable organic amendment to improve soil fertility and immobilize Cd and Ni. In addition to improving water and nutrients, soil better microbial proliferation enhances the soil rhizosphere ecosystem and nutrient cycling. This review has covered Cd and Ni harmful effects on crop yield and their immobilization by activated carbon biochar. The focus was made to elaborate on the positive effects of biochar on crop yield and soil health.
RESUMO
Micronutrient deficiency in the soil is one of the major causes of mango fruit and yield's poor quality. Besides, the consumption of such a diet also causes a deficiency of micronutrients in humans. Boron deficiency adversely affects the flowering and pollen tube formation, thus decreasing mango yield and quality attributes. Soil and foliar application of B are considered a productive method to alleviate boron deficiency. A field experiment was conducted to explore the Boron most suitable method and application rate in mango under the current climatic scenario. There were nine treatments applied in three replications. The results showed that application of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) significantly enhanced the nitrogen, potassium, proteins, ash, fats, fiber, and total soluble solids in mango as compared to the control. A significant decrease in sodium, total phenolics contents, antioxidant activity, and acidity as citric acid also validated the effective functioning of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) as compared to control. In conclusion, T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) is a potent strategy to improve the quality attributes of mango under the changing climatic situation.
RESUMO
The aim of a joint effort by different research teams was to provide an improved procedure for enzyme activity profiling of field-sampled ectomycorrhizae, including recommendations on the best conditions and maximum duration for storage of ectomycorrhizal samples. A more simplified and efficient protocol compared to formerly published procedures was achieved by using manufactured 96-filter plates in combination with a vacuum manifold and by optimizing incubation times. Major improvements were achieved by performing the series of eight enzyme assays with a single series of root samples instead of two series, reducing the time needed for sample preparation, minimizing error-prone steps such as pipetting and morphotyping, and facilitating subsequent DNA analyses due to the reduced sequencing effort. The best preservation of samples proved to be storage in soil at 4-6 °C in the form of undisturbed soil cores containing roots. Enzyme activities were maintained for up to 4 weeks under these conditions. Short-term storage of washed roots and ectomycorrhizal tips overnight in water did not cause substantial changes in enzyme activity profiles. No optimal means for longer-term storage by freezing at -20 °C or storage in 100% ethanol were recommended.
Assuntos
Enzimas/análise , Micologia/métodos , Micorrizas/enzimologia , Raízes de Plantas/microbiologia , Preservação Biológica/métodos , Temperatura Baixa , Técnicas Microbiológicas/métodos , Fatores de TempoRESUMO
Given the rapidly increasing use of metal oxide nanoparticles in agriculture as well as their inadvertent addition through sewage sludge application to soils, it is imperative to assess their possible toxic effects on soil functions that are vital for healthy crop production. In this regard, we designed a lab study to investigate the potential toxicity of one of the most produced nanoparticles, i.e. zinc oxide nanoparticles (nZnO), in a calcareous soil. Microcosms of 80 g of dry-equivalent fresh soils were incubated in mason jars for 64 days, after adding 100 or 1000 mg of biogenically produced nZnO kg-1 soil. Moreover, we also added rice-straw derived biochar at 1 or 5% (w: w basis) hypothesizing that the biochar would alleviate nZnO-induced toxicity given that it has been shown to adsorb and detoxify heavy metals in soils. We found that the nZnO decreased microbial biomass carbon by 27.0 to 33.5% in 100 mg nZnO kg-1 soil and by 39.0 to 43.3% in 1000 mg nZnO kg-1 soil treatments across biochar treatments in the short term i.e. 24 days after incubation. However, this decrease disappeared after 64 days of incubation and the microbial biomass in nZnO amended soils were similar to that in control soils. This shows that the toxicity of nZnO in the studied soil was ephemeral and transient which was overcome by the soil itself in a couple of months. This is also supported by the fact that the nZnO induced higher cumulative C mineralization (i.e. soil respiration) at both rates of addition. The treatment 100 mg nZnO kg-1 soil induced 166 to 207%, while 1000 mg nZnO kg-1 soil induced 136 to 171% higher cumulative C mineralization across biochar treatments by the end of the experiment. However, contrary to our hypothesis increasing the nZnO addition from 100 to 1000 mg nZnO kg-1 soil did not cause additional decrease in microbial biomass nor induced higher C mineralization. Moreover, the biochar did not alleviate even the ephemeral toxicity that was observed after 24d of incubation. Based on overall results, we conclude that the studied soil can function without impairment even at 1000 mg kg-1 concentration of nZnO in it.
RESUMO
Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investigation of the effect of biochar (BC) treatment on structural changes in the chlorophyll molecules of both plants that were tested. For this, dried leaf of Spinacia oleracia (spinach) and Trigonella corniculata (fenugreek) were selected for FTIR spectral study of chlorophyll associated functional groups. The study's primary goal was to investigate the silent features of infrared (IR) spectra of dried leave samples. The data obtained from the current study also shows that leaf chlorophyll can mask or suppress other molecules' FITR bands, including proteins. In addition, the C = O bands with Mg and the C9 ketonic group of chlorophyll are observed as peaks at1600 (0%BC), 1650 (3%BC) and 1640, or near to1700 (5%BC) in spinach samples. In fenugreek, additional effects are observed in the FTIR spectra of chlorophyll at the major groups of C = C, C = O and C9 of the ketonic groups, and the vibrational bands are more evident at C-H and N-H of the tetrapyrrole ring. It is concluded that C-N bands are more visible in 5% BC treated spinach and fenugreek than in all other treatments. These types of spectra are useful in detecting changes or visibility of functional groups, which are very helpful in supporting biochemical data such as an increase in protein can be detected by more visibility of C-N bands in FTIR spectra.
Assuntos
Carvão Vegetal/química , Clorofila/análise , Poluição Ambiental/prevenção & controle , Spinacia oleracea/química , Trigonella/química , Absorção Fisico-Química , Clorofila/química , Clorofila/metabolismo , Poluição Ambiental/efeitos adversos , Metais Pesados/química , Estrutura Molecular , Folhas de Planta/química , Solo/química , Poluentes do Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , VibraçãoRESUMO
Zinc (Zn) deficiency can severely inhibit plant growth, yield, and enzymatic activities. Zn plays a vital role in various enzymatic activities in plants. Arbuscular mycorrhizal fungi (AMF) play a crucial role in improving the plant's Zn nutrition and mitigating Zn stress effects on plants. The current study was conducted to compare the response of inoculated and non-inoculated maize (YH 1898) in the presence of different levels of zinc under greenhouse conditions under a Zn deficient condition. There were two mycorrhizal levels (i.e., M + with mycorrhizae, M- without mycorrhizae) and five Zn levels (i.e., 0, 1.5, 3, 6, and 12 mg kg-1), with three replicates following completely randomized design. At the vegetative stage (before tillering), biochemical, physiological, and agronomic attributes were measured. The results showed that maize plants previously inoculated with AMF had higher gaseous exchange traits, i.e., a higher stomatal conductance rate, favoring an increased photosynthetic rate. Improvement in antioxidant enzyme activity was also observed in inoculated compared to non-inoculated maize plants. Moreover, AMF inoculation also played a beneficial role in nutrients availability and its uptake by plants. Higher Zn12 (12 mg Zn kg-1 soil) treatment accumulated a higher Zn concentration in soil, root, and shoot in AMF-inoculated than in non-inoculated maize plants. These results are consistent with mycorrhizal symbiosis beneficial role for maize physiological functioning in Zn deficient soil conditions. Additionally, AMF inoculation mitigated the stress conditions and assisted nutrient uptake by maize.
Assuntos
Micorrizas/patogenicidade , Solo/química , Zea mays/microbiologia , Zinco/deficiência , Micorrizas/metabolismo , Fotossíntese , Estômatos de Plantas/metabolismo , Zea mays/metabolismo , Zinco/análiseRESUMO
Zinc (Zn) is an essential micronutrient required to enhance crop growth and yield. In the arid - semiarid region, Zn deficiency is expected due to alkaline calcareous soil. Contrarily, Zn toxicity is also becoming an environmental concern due to increasing anthropogenic activities (metal smelting, copper industry, etc.). Therefore, balanced Zn application is necessary to save resources and achieve optimum crop growth and yield. Most scientists suggest biological approaches to overcome the problem of Zn toxicity and deficiency. These biological approaches are mostly environment-friendly and cost-effective. In these biological approaches, the use of arbuscular mycorrhizae fungi (AMF) symbiosis is becoming popular. It can provide tolerance to the host plant against Zn-induced stress. Inoculation of AMF helps in balance uptake of Zn and enhances the growth and yield of crops. On the other hand, maize (Zea mays L.) is an important cereal crop due to its multifarious uses. As maize is an effective host for mycorrhizae symbiosis, that's why this review was written to elaborate on the beneficial role of arbuscular mycorrhizal fungi (AMF). The review aimed to glance at the recent advances in the use of AMF to enhance nutrient uptake, especially Zn. It was also aimed to discuss the mechanism of AMF to overcome the toxic effect of Zn. We have also discussed the detailed mechanism and physiological improvement in the maize plant. In conclusion, AMF can play an imperative role in improving maize growth, yield, and balance uptake of Zn by alleviating Zn stress and mitigating its toxicity.
RESUMO
Bacterial spot, caused by a group of Xanthomonads (Xanthomonas spp.), is a devastating disease. It can adversely affect the Capsicum annum productivity. Scientists are working on the role of antioxidants to meet this challenge. However, research is lacking on the role of antioxidant enzymes and their isoforms in the non-compatible pathogen and host plant interaction and resistance mechanisms in capsicum varieties. The present study was conducted to ascertain the defensive role of antioxidant enzymes and their isoforms in chilli varieties Hybrid, Desi, Serrano, Padron, and Shehzadi against bacterial spot disease-induced Xanthomonas sp. The seedlings were inoculated with bacterial pathogen @ 107 CFU/mL, and samples were harvested after regular intervals of 24 h for 4 days followed by inoculation. Total plant proteins were extracted in phosphate buffer and quantified through Bradford assay. The crude protein extracts were analyzed through quantitative enzymatic assays in order to document activity levels of various antioxidant enzymes, including peroxidase (POD), Catalase (CAT), Ascorbate peroxidase (APX), and Superoxide dismutase (SOD). Moreover, the profiles appearance of these enzymes and their isoforms were determined using native polyacrylamide gel electrophoresis (PAGE) analysis. These enzymes exhibited maximum activity in Hybrid (HiR) cultivar followed by Desi (R), Serrano (S), Padron, and Shehzadi (HS). Both the number of isoforms and expression levels were higher in highly resistant cultivars compared to susceptible and highly susceptible cultivars. The induction of POD, CAT, and SOD occurs at the early stages of growth in resistant Capsicum cultivars. At the same time, APX seems to make the second line of antioxidant defense mechanisms. We found that modulating antioxidant enzymes and isoforms activity at the seedling stage was an important mechanism for mitigating plant growth inhibition in the resistant ones.
Assuntos
Antioxidantes/metabolismo , Capsicum/microbiologia , Estresse Oxidativo/fisiologia , Doenças das Plantas/microbiologia , Estresse Fisiológico/fisiologia , Ascorbato Peroxidases/metabolismo , Capsicum/crescimento & desenvolvimento , Catalase/metabolismo , Peróxido de Hidrogênio/análise , Peroxidase/metabolismo , Proteínas de Plantas/análise , Isoformas de Proteínas/metabolismo , Superóxido Dismutase/metabolismo , Xanthomonas/patogenicidadeRESUMO
Nutrient disorder and presence of disease-causing agents in soilless media negatively influence the growth of muskmelon. To combat these issues, use of environmentally-friendly sanitation techniques is crucial for increased crop productivity. The study was conducted under greenhouse and field conditions to investigate the effect of two different sanitation techniques: steaming and formalin fumigation on various media's characteristics and their impact on muskmelon yield. Media: jantar, guar, wheat straw and rice hull and peat moss of 10% air-filled porosity and sanitized with formalin and steaming. Steaming of guar, jantar, and wheat straw increased the phosphorus (P) and potassium (K) concentrations by 13.80-14.86% and 6.22-8.45% over formalin fumigation. Likewise, P and K concentrations in muskmelon were higher under steaming. Steaming significantly inhibited the survival of Fusarium wilt sp. melonis, root knot nematode sp. meloidogyne and nitrifying bacteria in media than formalin fumigation. In conclusion, steaming decreased the prevalence of nitrifying bacteria and pathogens which thus improved the NO3--N:NH4+-N ratios, P and K nutritional balance both in the media and muskmelon transplants. Hence, steaming as an environment-friendly approach is recommended for soilless media. Further, optimization of steaming for various composts with different crops needs to be investigated with steaming teachnique.
Assuntos
Produção Agrícola , Cucumis melo , Formaldeído/farmacologia , Fumigação , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/microbiologiaRESUMO
Tetraploids are usually more tolerant to environmental stresses than diploids. Citrus plants face numerous abiotic stresses, including salinity, which negatively affect growth and yield. Double diploid citrus rootstocks have been shown to be more tolerant to abiotic stresses than their diploid relatives. In this study, we evaluated the antioxidative and osmotic adjustment mechanisms of diploid (2x) and double diploid (4x) volkamer lemon (Citrus volkameriana Tan. and Pasq.) rootstocks, which act against salt stress (75 and 150â¯mM). Results indicated that, under salt stress, all physiological variables (photosynthesis, stomatal conductance, transpiration rate, and leaf greenness) decreased, and these decreases were more noticeable in 2x plants than in 4x plants. On the other hand, accumulation of oxidative markers (malondialdehyde and hydrogen peroxide) was greater in the leaves and roots of 2x seedlings than in 4x seedlings. Similarly, the activities of antioxidative enzymes (peroxidase, ascorbate peroxidase, glutathione reductase, and catalase) were higher in the leaves and roots of 4x plants than in 2x plants. However, superoxide dismutase activity was higher in the roots of 2x seedlings than 4x seedlings. Double diploid plants affected by salt stress accumulated more osmolytes (i.e. proline and glycine betaine) in their leaves and roots than that by 2x plants. Total protein content, antioxidant capacity, and total phenolic content were also higher in 4x plants than 2x plants under salinity. At 150â¯mM, both 2x and 4x plants showed more symptoms of stress than those at 75â¯mM. Sodium content was the highest in the roots of 2x plants and in the leaves of 4x plants, while chloride content peaked in the leaves of 2x plants and in the roots of 4x plants. Overall, our results demonstrate that the active antioxidative defence mechanisms of 4x plants increase their tolerance to salinity compared to their corresponding 2x relatives. Thus, the use of newly developed tetraploid rootstocks may be a strategy for enhancing crop production in saline conditions.
Assuntos
Antioxidantes/fisiologia , Citrus/fisiologia , Osmose/fisiologia , Tolerância ao Sal/genética , Citrus/genética , Diploide , Plântula/genética , Plântula/fisiologia , TetraploidiaRESUMO
Growth and development of cereal crops are linked to weather, day length and growing degree-days (GDDs) which make them responsive to the specific environments in specific seasons. Global temperature is rising due to human activities such as burning of fossil fuels and clearance of woodlands for building construction. The rise in temperature disrupts crop growth and development. Disturbance mainly causes a shift in phenological development of crops and affects their economic yield. Scientists and farmers adapt to these phenological shifts, in part, by changing sowing time and cultivar shifts which may increase or decrease crop growth duration. Nonetheless, climate warming is a global phenomenon and cannot be avoided. In this scenario, food security can be ensured by improving cereal production through agronomic management, breeding of climate-adapted genotypes and increasing genetic biodiversity. In this review, climate warming, its impact and consequences are discussed with reference to their influences on phenological shifts. Furthermore, how different cereal crops adapt to climate warming by regulating their phenological development is elaborated. Based on the above mentioned discussion, different management strategies to cope with climate warming are suggested.
Assuntos
Adaptação Fisiológica , Mudança Climática , Produtos Agrícolas/fisiologia , Grão Comestível/fisiologia , Estações do Ano , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Crescimento DemográficoRESUMO
Heavy metals (HMs) being the notorious and toxic are being introduced into the environment credited to natural and anthropogenic activities. The use of ornamental plants is being ignored as potential candidates for HMs phytoremediation. In this study, pot experiments were conducted on Catharanthus roseus (L.) G.Don to evaluate selected heavy metals tolerance and accumulation potential with reference to the bacterial endophyte (Bacillus cereus) and organic amendments (moss and compost at 5% v/v). Results indicated improvement in uptake of Cd (230 mg kg-1), Cu (229 mg kg-1), and Cr (458 mg kg-1) by C. roseus with B. cereus. The concentration of Ni and Pb was found highest in controls (without strain) that were 420 and 904 mg kg-1, respectively. Conversely, the addition of organic amendments enhanced biomass production, as compared to controls, 441, 471, and 763% by peat moss (T3), compost (T4), and peat moss + compost + inoculum treatments (T6), respectively, while reduction of plant HMs content was observed. Microbial-aided phytoremediation/phytoextraction could be a potential method for removal of Cd, Cr, and Cu, while organic amendments can significantly improve plant growth in the presence of heavy metals.
Assuntos
Catharanthus , Compostagem , Metais Pesados , Poluentes do Solo , Bacillus cereus , Biodegradação Ambiental , Cádmio , Metais Pesados/análise , Solo , Poluentes do Solo/análiseRESUMO
Extensive use of antibiotic results in significant antibiotics pollution in the environment. Main objective of this study was to gain insight into potential impacts of antibiotics on plant physiological growth and nutritional composition, and stress alleviation through application of different organic amendments. Effects of five antibiotics (ciprofloxacin, levofloxacin, ofloxacin, amoxicillin and ampicillin) were observed in the presence of three organic amendments (rice husk, farmyard manure and poultry litter) with rice (Oryza sativa L.) as a model plant. Organic amendments were mixed with soil (@ 5 g kg-1) and after three weeks, antibiotics were applied (@10 mg kg-1) and plants were allowed to grow for four months. After which plants were harvested and physical growth parameters (root/shoot length, biomass) and nutritional composition (grain protein content, carbohydrates, phosphorous and iron) were monitored. It was observed that germination rate, seedling root/shoot length, seedling biomass and vigor index were negatively impacted. The application of organic amendments alleviated antibiotic stress on seedling dry biomass, length and vigor index by 1.8-, 3.1- and 2.5-folds, respectively as compared to the antibiotic controls. Concentrations of phosphorous, iron, carbohydrates and proteins were decreased by 5.3-, 1.3-, 1.4- and 1.6-folds upon application of antibiotics. Rice husk was the most effective treatment in case of physical growth parameters and alleviating antibiotics' induced genotoxicity. Whereas, poultry litter had the highest positive effect on nutritional composition of plants. In general, the application of organic amendments alleviated the phytotoxicity as well as genotoxicity in plants under antibiotics stress.