Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37612859

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) are a focus of huge interest in biological research, including stem cell research. AgNPs synthesized using Cyperus conglomeratus root extract have been previously reported but their effects on mesenchymal stromal cells have yet to be investigated. OBJECTIVES: The aim of this study is to investigate the effects of C. conglomeratus-derived AgNPs on adipogenesis and osteogenesis of mesenchymal stromal cells. METHODS: AgNPs were synthesized using C. conglomeratus root extract, and the phytochemicals involved in AgNPs synthesis were analyzed using gas chromatography-mass spectrometry (GC-MS). The cytotoxicity of the AgNPs was tested on telomerase-transformed immortalized human bone marrow-derived MSCs-hTERT (iMSC3) and human osteosarcoma cell line (MG-63) using MTT and apoptosis assays. The uptake of AgNPs by both cells was confirmed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Furthermore, the effect of AgNPs on iMSC3 adipogenesis and osteogenesis was analyzed using stain quantification and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: The phytochemicals predominately identified in both the AgNPs and C. conglomeratus root extract were carbohydrates. The AgNP concentrations tested using MTT and apoptosis assays (0.5-64 µg/ml and 1,4 and 32 µg/ml, respectively) showed no significant cytotoxicity on iMSC3 and MG-63. The AgNPs were internalized in a concentration-dependent manner in both cell types. Additionally, the AgNPs exhibited a significant negative effect on osteogenesis but not on adipogenesis. CONCLUSION: C. conglomeratus-derived AgNPs had an impact on the differentiation capacity of iMSC3. Our results indicated that C. conglomeratus AgNPs and the associated phytochemicals could exhibit potential medical applications.

2.
Fitoterapia ; 169: 105555, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295757

RESUMO

Several plant secondary metabolites are used in the production of different pharmaceuticals based on their biological activities. The conservation and sustainable use of medicinal plants is important for the industrial production of plant-based medicines. Different cryopreservation methods are used for long-term culture preservation, which allows fast regeneration of the preserved plant material with the maintenance of its primary original traits. These methods could ensure the sustainable indefinite supply of plant tissues for theoretically unlimited periods of time, and have gained considerable attention in recent years. It is important to assess the recovery rate and the genetic stability of the recovered plant tissues after cryopreservation because cryopreservation efficiency differs among plant tissues and species. This review lays particular emphasis on the pharmaceutical applications of plant secondary metabolites that are produced through tissue culture approaches, highlighting the methods used for their cryopreservation, as well as their recovery and genetic stability.


Assuntos
Plantas Medicinais , Estrutura Molecular , Criopreservação
3.
Antioxidants (Basel) ; 11(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453341

RESUMO

Citrullus colocynthis (Cucurbitaceae) is an important medicinal plant traditionally used in the United Arab Emirates (UAE). In a recent study, it has been reported that different individuals of the same population of C. colocynthis, growing in the hot arid desert of the UAE, exhibited variations in their fruit size, color, and stripe pattern. In addition, these plants differed genetically, and their seeds showed variation in size, color, and germination behavior (hereinafter, these individuals are referred to as accessions). In the present study, the total phenolic content (TPC) and antioxidant activity of different fruit parts (rinds, pulps, and seeds) of three different accessions with significant genetic variations, from a single C. colocynthis population, were assessed in response to different seasonal environments. Green fruits were collected in summer and winter from three accessions growing in the botanic garden of the University of Sharjah, UAE. Methanolic extracts from different fruit parts were prepared. The TPC was qualitatively determined by a Folin-Ciocalteu assay, while the antioxidant capacity was analyzed using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging ability. The metabolic profiling of the antioxidant metabolites was determined using a gas chromatograph coupled to mass spectrometry (GC-MS), associated with a literature search. The results showed that the TPC and the DPPH free radical scavenging activity varied between seasons, accessions, and fruit parts. The highest phenolics were in rinds, but the highest antioxidant activities were in seeds during the summer, reflecting the role of these compounds in protecting the developed seeds from harsh environmental conditions. The metabolomic analysis revealed the presence of 28 metabolites with significant antioxidant activities relevant to fruit parts and season. Collectively, the formation of phenolics and antioxidant activity in different fruit parts is environmentally and genetically dependent.

4.
Cureus ; 12(5): e8308, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32607292

RESUMO

Kidneys are one of the essential organs of our body, with chronic kidney disease being a very prevalent and emotionally, mentally and physically straining condition affecting 1 in 15 people worldwide. The prevalence is further escalating with every passing year. It is slowly progressive in nature, and many times goes unnoticed until symptoms start manifesting and presenting themselves much later in life. In this article, end-stage renal disease (ESRD) due to diabetes mellitus and its effect on different organs is examined, along with the role of simultaneous pancreas-kidney transplant (SPKT) in the management of this condition. Although proven to be an assured treatment with an outstanding allograft acceptance rate, the fact that it is still not widely adopted in many healthcare setups due to financial implications is also studied. Online databases such as PubMed and Google Scholar were searched for the purpose of data collection; due to the very limited number of randomized controlled trials conducted on this given topic, a limited discussion was retrieved. By applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method and several inclusion/exclusion criteria, approximately 66 articles were assessed for eligibility based on the title and abstract. A total of 44 articles were shortlisted and considered in the final review. Several systematic reviews that have been conducted in the past reveal the importance of SPKT at an early stage of diagnosis towards increasing longevity of the patient with freedom from multiple medications. Transplant is a cost-effective therapy when compared to the prolonged dependence on dialysis, insulin pens, and increased susceptibility to infections. A greater number of specialists must also train to carry out SPKT and identify the early stages of ESRD, and medical centers should be encouraged to carry out transplant procedures effectively both financially and medically. This can be achieved through the development of global policy mechanisms and establishment of universally adoptable standards.

5.
Nanomaterials (Basel) ; 9(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805737

RESUMO

Nanoparticle (NP) synthesis by biological systems is more cost-effective, safe, and environmentally friendly when compared to currently used chemical and physical methods. Although many studies have utilized different plant extracts to synthesize NPs, few studies have incorporated living plants. In this study, silver nanoparticles (AgNPs) were synthesized exogenously by Tephrosia apollinea living plant system under the combined stresses of silver nitrate and different levels of drought stress simulated by Polyethylene glycol (PEG) (0, -0.1, -0.2, and -0.4 MPa for three and six days). Biomass, cell death, and H2O2 content were evaluated to determine the toxicological effect of the treatments on the plant. More severe effects were detected in day 6 plants compared to day 3 plants, and at higher drought levels. UV-visible spectrum, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy were used to detect and characterize the T. apollinea synthesized NPs. The shapes of the NPs were spherical and cubic with different phytochemicals being the possible capping agents. Broth microdilution was used to determine the antimicrobial activity of the NPs against Escherichia coli and Staphylococcus aureus. In this case, antimicrobial activity increased at higher PEG concentrations. Bactericidal effects were observed against E. coli, while only bacteriostatic effects were detected against S. aureus.

6.
Recent Pat Food Nutr Agric ; 9(1): 55-64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29629668

RESUMO

BACKGROUND: Commercially available herbal and medicinal plants-based products are susceptible to substitution or contamination with other unlabeled or undesired materials. This will reduce the quality of the product, and may lead to intoxication and allergy. METHODS: DNA barcoding is a molecular technology that allows the identification of plant materials at the species level, by sequencing short stretches of standardized gene sequences from nuclear or organelle genome in an easy, rapid, accurate and cost-effective manner. The aim of this research is to apply DNA barcoding to investigate the authenticity of commercially available herbal and medicinal plant-based products within the UAE markets. A total of 30 samples were analyzed, covering six different herbal products (thyme, cardamom, anise, basil, turmeric, and ginger), obtained in fresh and dried forms. DNA was extracted and three barcode loci including (rbcL), (matK) and (ITS) were amplified, sequenced and analyzed by BLAST. RESULTS: In terms of amplification efficiency, the results suggest that rbcL is the most suitable marker for species identification giving 75% of successful amplification, followed by ITS with 66.67%, whereas matK had the lowest with 18.52%. Adulteration was detected in two samples, ginger powder and dry thyme leave samples. The adulterants were from Triticum and Oryza genera. CONCLUSION: Clearly, the results from this report provide evidence that DNA barcoding technique is efficient in the recognition of commercial plant products. Thus, it can be considered as a fast, effective, and reliable method to detect adulteration in plant-based products in the UAE market.


Assuntos
Código de Barras de DNA Taxonômico , Contaminação de Medicamentos , Plantas Medicinais/genética , DNA de Plantas , Humanos , Patentes como Assunto , Controle de Qualidade , Reprodutibilidade dos Testes , Emirados Árabes Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa