Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Microb Pathog ; : 106777, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002657

RESUMO

Francisella tularensis can cause severe disease in humans via the respiratory or cutaneous routes and a case fatality ratio of up to 10% is reported due to lack of proper antibiotic treatment, while F. novicida causes disease in severely immunocompromised individuals. Efforts are needed to develop effective vaccine candidates against Francisella species. Thus, in this study, a systematic computational work frame was used to deeply investigate the whole proteome of Francisella novicida containing 1,728 proteins to develop vaccine against F. tularensis and related species. Whole-proteome analysis revealed that four proteins including (A0Q492) (A0Q7Y4), (A0Q4N4), and (A0Q5D9) are the suitable vaccine targets after the removal of homologous, paralogous and prediction of subcellular localization. These proteins were used to predict the T cell, B cell, and HTL epitopes which were joined together through suitable linkers to construct a multi-epitopes vaccine (MEVC). The MEVC was found to be highly immunogenic and non-allergenic while the physiochemical properties revealed the feasible expression and purification. Moreover, the molecular interaction of MEVC with TLR2, molecular simulation, and binding free energy analyses further validated the immune potential of the construct. According to Jcat analysis, the refined sequence demonstrates GC contents of 41.48% and a CAI value of 1. The in-silico cloning and optimization process ensured compatibility with host codon usage, thereby facilitating efficient expression. Computational immune simulation studies underscored the capacity of MEVC to induce both primary and secondary immune responses. The conservation analysis further revealed that the selected epitopes exhibit 100% conservation across different species and thus provides wider protection against Francisella.

2.
Biotechnol Appl Biochem ; 71(2): 402-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287712

RESUMO

Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.


Assuntos
Acetil-CoA Carboxilase , Streptomyces antibioticus , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Streptomyces antibioticus/metabolismo , Acetilcoenzima A/genética , Simulação de Acoplamento Molecular , Mutação , Saccharomyces cerevisiae/metabolismo , Escherichia coli/metabolismo
3.
Saudi Pharm J ; 31(10): 101775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37719892

RESUMO

The growing concerns and cases of COVID-19 with the appearance of novel variants i.e., BA.2.75. BA.5 and XBB have prompted demand for more effective treatment options that could overcome the risk of immune evasion. For this purpose, discovering novel small molecules to inhibit druggable proteins such as PLpro required for viral pathogenesis, replication, survival, and spread is the best choice. Compounds from the Dark chemical matter (DCM) database is consistently active in various screening tests and offer intriguing possibilities for finding drugs that are extremely selective or active against uncommon targets. Considering the essential role of PLpro, the current study uses DCMdatabase for the identification of potential hits using in silico virtual molecular screening and simulation approaches to inhibit the current and emerging variants of SARS-CoV-2. Our results revealed the 10 best compounds with docking scores between -7.99 to -7.03 kcal/mol better than the control drug (GRL0617) among which DC 5977-0726, DC 6623-2024, DC C879-0379 and DC D135-0154 were observed as the best hits. Structural-dynamics properties such as dynamic stability, protein packing, and residue flexibility demonstrated the pharmacologically favorable properties of these top hits in contrast to GRL0617. The hydrogen bonding half-life revealed that Asp164, Arg166, Tyr264, and Tyr268 have major contributions to the hydrogen bonding during the simulation. However, some of the important hydrogen bonds were missing in the control drug (GRL0617). Finally, the total binding free energy was reported to be -34.41 kcal/mol for GRL0617 (control), -41.03 kcal/mol for the DC5977-0726-PLpro, for the DC6623-2024-Plpro complex the TBE was -48.87 kcal/mol, for the for DCC879-0379-Plpro complex the TBE was -45.66 kcal/mol while for the DCD135-0154-PLpro complex the TBE was calculated to be -40.09 kcal/mol respectively, which shows the stronger potency of these compounds against PLpro and further in in vivo and in vitro test are required for the possible usage as potential drug against SARS-CoV-2.

4.
Microb Pathog ; 168: 105592, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35595178

RESUMO

Heartland virus is a single-stranded negative-sense RNA virus that infects humans and causes lethargy, myalgia, headaches, nausea, diarrhea, weight loss, arthralgia, loss of appetite, leukopenia, and easy bruising due thrombocytopenia. The unavailability of antiviral drugs for HRTV infection is a major obstacle to treat this infection, therefore supportive care management is adopted in the case of a severe ailment. In this scientific study, proteins specific and proteome-wide Helper T-cell (HTL), linear B cell, and cytotoxic T-cell (CTL) epitopes mapping joined together with suitable linkers to design multi-epitopes subunit vaccine (MEVC). The constructed four vaccines from nucleocapsid protein, replicase, glycoprotein and finally whole proteome-wide constructs demonstrated stronger antigenic and non-allergenic behavior. Physiochemical properties evaluation also reported easy and efficient expression and downstream analysis of the constructs. Molecular docking of these constructs with toll-like receptor 7 (TLR7) revealed good binding and further validation based on MM/GBSA also demonstrated stronger interaction between the vaccine constructs and TLR7. Moreover, in silico cloning reported CAI value of 0.96 for each construct and excellent GC contents percentage required for experimental analysis. Furthermore, immune simulation-based immune response surveillance revealed that upon the injection of antigen the primary and secondary antibodies were produced between 5 and 15 days, and a more robust neutralization of the antigen by the proteome-wide vaccine construct was observed. This research could pave the way for the development of dynamic and efficient vaccines that contain a unique mix of numerous HRTV derived antigenic peptides to control HRTV infection.


Assuntos
Proteoma , Vacinologia , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Simulação de Acoplamento Molecular , Receptor 7 Toll-Like , Vacinas de Subunidades Antigênicas
5.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364143

RESUMO

The emergence of immune-evading variants of SARS-CoV-2 further aggravated the ongoing pandemic. Despite the deployments of various vaccines, the acquired mutations are capable of escaping both natural and vaccine-induced immune responses. Therefore, further investigation is needed to design a decisive pharmacological treatment that could efficiently block the entry of this virus into cells. Hence, the current study used structure-based methods to target the RBD of the recombinant variant (Deltacron) of SARS-CoV-2, which was used as a model variant. From the virtual drug screenings of various databases, a total of four hits were identified as potential lead molecules. Key residues were blocked by these molecules with favorable structural dynamic features. The binding free energies further validated the potentials of these molecules. The TBE for MNP was calculated to be -32.86 ± 0.10 kcal/mol, for SANC00222 the TBE was -23.41 ± 0.15 kcal/mol, for Liriodenine the TBE was -34.29 ± 0.07 kcal/mol, while for Carviolin the TBE was calculated to be -27.67 ± 0.12 kcal/mol. Moreover, each complex demonstrated distinct internal motion and a free energy profile, indicating a different strategy for the interaction with and inhibition of the RBD. In conclusion, the current study demands further in vivo and in vitro validation for the possible usage of these compounds as potential drugs against SARS-CoV-2 and its variants.


Assuntos
Tratamento Farmacológico da COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Pandemias , Ligação Proteica , Simulação de Acoplamento Molecular
6.
J Cell Physiol ; 236(10): 7045-7057, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755190

RESUMO

The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor-binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS-CoV-2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y), and hypothetical (N501Y-E484K) variants alter the binding affinity, create new inter-protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection-driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants.


Assuntos
Mutação/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Brasil , COVID-19/metabolismo , Humanos , Ligação Proteica/genética , África do Sul , Reino Unido , Virulência/genética
7.
Chembiochem ; 22(16): 2641-2649, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34160124

RESUMO

The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Virulência
8.
Microb Pathog ; 160: 105161, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34461244

RESUMO

Hantaviruses are etiological agents of several severe respiratory illnesses in humans and their human-to-human transmission has been reported. To cope with any potential pandemic, this group of viruses needs further research and a data platform. Therefore, herein we developed a database "HantavirusesDB (HVdb)", where genomics, proteomics, immune resource, RNAi based therapeutics and information on the 3D structures of druggable targets of the Orthohantaviruses are provided on a single platform. The database allows the researchers to effectively map the therapeutic strategies by designing multi-epitopes subunit vaccine and RNA based therapeutics. Moreover, the ease of the web interface allow the users to retrieve specific information from the database. Because of the high quality and excellent functionality of the HVdb, therapeutic research of Hantaviruses can be accelerated, and data analysis might be a foundation to design better treatment strategies targeting the hantaviruses. The database is accessible at http://hvdb.dqweilab-sjtu.com/index.php.


Assuntos
Genômica , Pandemias , Bases de Dados de Ácidos Nucleicos , Humanos , Proteômica , RNA
9.
Microb Pathog ; 152: 104771, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33524568

RESUMO

Mycoplasma genitalium is a small size, sexually transmitted bacterial pathogen that causes urethritis in males and cervicitis in females. Being resistant to antibiotics, difficulty in diagnosis, treatment, and control of this cosmopolitan infection, vaccination is the alternating method for its effective management. Herein, this study was conducted to computationally design a multi-epitope vaccine to boost host immune responses against M. genitalium. To achieve the study aim, immunoinformatics approaches were applied to the said pathogen's proteomics sequence data. B and T cell epitopes were projected from the three shortlisted vaccine proteins; MG014, MG015, Hmw3MG317. The final vaccine ensemble comprises cytotoxic and helper T cell epitopes fused through appropriate linkers. The epitopes peptide is then liked to an adjuvant for efficient recognition and processing by the host immune system. The various physicochemical parameters such as allergenicity, antigenicity, theoretical pI, GRAVY, and molecular weight of the vaccine were checked and found safe and effective to be used in post-experimental studies. The stability and binding affinity of the vaccine with the TLR1/2 heterodimer were ensured by performing molecular docking. The best-docked complex was considered, ranked top having the lowest binding energy and strong intermolecular binding and stability. Finally, the vaccine constructs better expression was obtained by in silico cloning into the pET28a (+) vector in Escherichia coli K-12 strain, and immune simulation validated the immune response. In a nutshell, all these approaches lead to developing a multi-epitope vaccine that possessed the ability to induce cellular and antibody-mediated immune responses against the pathogen used.


Assuntos
Escherichia coli K12 , Infecções por Mycoplasma , Mycoplasma genitalium , Vacinas Bacterianas , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Feminino , Humanos , Imunidade , Simulação de Acoplamento Molecular , Infecções por Mycoplasma/prevenção & controle , Mycoplasma genitalium/genética , Proteoma , Vacinas de Subunidades Antigênicas
12.
Bioprocess Biosyst Eng ; 39(12): 1945-1954, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27515537

RESUMO

Natural products are gaining tremendous importance in pharmaceutical industry and attention has been focused on the applications of in vitro technologies to enhance yield and productivity of such products. In this study, we investigated the accumulation of biomass and antioxidant secondary metabolites in response to different carbohydrate sources (sucrose, maltose, fructose and glucose) and sucrose concentrations (1, 3, 5, 7 and 9 %). Moreover, the effects of 3 % repeated sucrose feeding (day-12, -18 and -24) were also investigated. The results showed the superiority of disaccharides over monosaccharides for maximum biomass and secondary metabolites accumulation. Comparable profiles for maximum biomass were observed in response to sucrose and maltose and initial sucrose concentrations of 3 and 5 %. Maximum total phenolic and total flavonoid contents were displayed by cultures treated with sucrose and maltose; however, initial sucrose concentrations of 5 and 7 % were optimum for both classes of metabolites, respectively. Following 3 % extra sucrose feeding, cultures fed on day-24 (late-log phase) showed higher biomass, total phenolic and total flavonoid contents as compared to control cultures. Highest antioxidant activity was exhibited by maltose-treated cultures. Moreover, sucrose-treated cultures displayed positive correlation of antioxidant activity with total phenolics and total flavonoids production. This work describes the stimulatory role of disaccharides and sucrose feeding strategy for higher accumulation of phenolics and flavonoids, which could be potentially scaled up to bioreactor level for the bulk production of these metabolites in suspension cultures of A. absinthium.


Assuntos
Antioxidantes/metabolismo , Artemisia absinthium/metabolismo , Flavonoides/biossíntese , Células Vegetais/metabolismo , Sacarose/farmacologia , Artemisia absinthium/citologia
13.
J Biomol Struct Dyn ; 42(7): 3641-3658, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37222664

RESUMO

Influenza viruses are the most common cause of serious respiratory illnesses worldwide and are responsible for a significant number of annual fatalities. Therefore, it is crucial to look for new immunogenic sites that might trigger an effective immune response. In the present study, bioinformatics tools were used to design mRNA and multiepitope-based vaccines against H5N1 and H7N9 subtypes of avian influenza viruses. Several Immunoinformatic tools were employed to extrapolate T and B lymphocyte epitopes of HA and NA proteins of both subtypes. The molecular docking approach was used to dock the selected HTL and CTL epitopes with the corresponding MHC molecules. Eight (8) CTL, four (4) HTL, and Six (6) linear B cell epitopes were chosen for the structural arrangement of mRNA and of peptide-based prophylactic vaccine designs. Different physicochemical characteristics of the selected epitopes fitted with suitable linkers were analyzed. High antigenic, non-toxic, and non-allergenic features of the designed vaccines were noted at a neutral physiological pH. Codon optimization tool was used to check the GC content and CAI value of constructed MEVC-Flu vaccine, which were recorded to be 50.42% and 0.97 respectively. the GC content and CAI value verify the stable expression of vaccine in pET28a + vector. In-silico immunological simulation the MEVC-Flu vaccine construct revealed a high level of immune responses. The molecular dynamics simulation and docking results confirmed the stable interaction of TLR-8 and MEVC-Flu vaccine. Based on these parameters, vaccine constructs can be regarded as an optimistic choice against H5N1 and H7N9 strains of the influenza virus. Further experimental testing of these prophylactic vaccine designs against pathogenic avian influenza strains may clarify their safety and efficacy.Communicated by Ramaswamy H. Sarma.


Assuntos
Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Animais , Influenza Aviária/prevenção & controle , Subtipo H7N9 do Vírus da Influenza A/genética , Simulação de Acoplamento Molecular , RNA Mensageiro/genética , Imunoinformática , Epitopos de Linfócito B , Vacinas de Subunidades Antigênicas , Epitopos de Linfócito T , Biologia Computacional
14.
J Biomol Struct Dyn ; : 1-17, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486461

RESUMO

The presence of conditions like Alpha-1 antitrypsin deficiency, hemochromatosis, non-alcoholic fatty liver diseases and metabolic syndrome can elevate the susceptibility to hepatic cellular carcinoma (HCC). Utilizing network-based gene expression profiling via network analyst tools, presents a novel approach for drug target discovery. The significance level (p-score) obtained through Cytoscape in the intended center gene survival assessment confirms the identification of all target center genes, which play a fundamental role in disease formation and progression in HCC. A total of 1064 deferential expression genes were found. These include MCM2 with the highest degree, followed by 4917 MCM6 and MCM4 with a 3944-degree score. We investigated the regulatory kinases involved in establishing the protein-protein interactions network using X2K web tool. The docking approach yields a favorable binding affinity of -8.7 kcal/mol against the target MCM2 using Auto-Dock Vina. Interestingly after simulating the complex system via AMBER16 package, results showed that the root mean square deviation values remained within 4.74 Å for a protein and remains stable throughout the time intervals. Additionally, the ligand's fit to the protein exhibited fluctuations at some intervals but remains stable. Finally, Gibbs free energy was found to be at its lowest at 1 kcal/mol which presents the real time interactive binding of the atomic residues among inhibitor and protein. The displacement of the ligand was measured showing stable movement and displacement along the active site. These findings increased our understanding for potential biomarkers in hepatocellular carcinoma and an experimental approach will further enhance our outcomes in future.Communicated by Ramaswamy H. Sarma.

15.
J Integr Plant Biol ; 55(10): 950-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23675765

RESUMO

Disjunct distribution patterns in plant lineages are usually explained according to three hypotheses: vicariance, geodispersal, and long-distance dispersal. The role of these hypotheses is tested in Urgineoideae (Hyacinthaceae), a subfamily disjunctly distributed in Africa, Madagascar, India, and the Mediterranean region. The potential ancestral range, dispersal routes, and factors responsible for the current distribution in Urgineoideae are investigated using divergence time estimations. Urgineoideae originated in Southern Africa approximately 48.9 Mya. Two independent dispersal events in the Western Mediterranean region possibly occurred during Early Oligocene and Miocene (29.9-8.5 Mya) via Eastern and Northwestern Africa. A dispersal from Northwestern Africa to India could have occurred between 16.3 and 7.6 Mya. Vicariance and extinction events occurred approximately 21.6 Mya. Colonization of Madagascar occurred between 30.6 and 16.6 Mya, after a single transoceanic dispersal event from Southern Africa. The current disjunct distributions of Urgineoideae are not satisfactorily explained by Gondwana fragmentation or dispersal via boreotropical forests, due to the younger divergence time estimates. The flattened winged seeds of Urgineoideae could have played an important role in long-distance dispersal by strong winds and big storms, whereas geodispersal could have also occurred from Southern Africa to Asia and the Mediterranean region via the so-called arid and high-altitude corridors.


Assuntos
Evolução Biológica , Extinção Biológica , Liliaceae/fisiologia , Dispersão de Sementes/fisiologia , África , Teorema de Bayes , Liliaceae/anatomia & histologia , Filogenia , Sementes/anatomia & histologia , Fatores de Tempo
16.
J Biomol Struct Dyn ; 41(20): 10762-10773, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541923

RESUMO

The current study investigated the binding variations among the wilt type, Omicron sub-variants BA.2.75 and BA.5, using protein-protein docking, protein structural graphs (P SG), and molecular simulation methods. HADDOCK predicted docking scores and dissociation constant (KD) revealed tighter binding of these sub-variants in contrast to the WT. Further investigation revealed variations in the hub residues, protein sub-networks, and GlobalMetapath in these variants as compared to the WT. A very unusual dynamic for BA.2.75 and BA.5 was observed, and secondary structure transition can also be witnessed in the loops (44-505). The results show that the flexibility of these three loops is increased by the mutations as an allosteric effect and thus enhances the chances of bonding with the nearby residues to connect and form a stable connection. Furthermore, the additional hydrogen bonding contacts steer the robust binding of these variants in contrast to the wild type. The total binding free energy for the wild type was calculated to be -61.38 kcal/mol, while for BA.2.75 and BA.5 variants the T BE was calculated to be -70.42 kcal/mol and 69.78 kcal/mol, respectively. We observed that the binding of BA.2.75 is steered by the electrostatic interactions while the BA.5 additional contacts are due to the vdW (Van der Waal) energy. From these findings, it can be observed the Spike (S) protein is undergoing structural adjustments to bind efficiently to the hACE2 (human angiotensin-converting enzyme 2) receptor and, in turn, increase entry to the host cells. The current study will aid the development of structure-based drugs against these variants.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação por Computador , Humanos , Ligação de Hidrogênio , Mutação , Eletricidade Estática
17.
Heliyon ; 9(4): e15083, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064465

RESUMO

The SARS COV-2 and its variants are spreading around the world at an alarming speed, due to its higher transmissibility and the conformational changes caused by mutations. The resulting COVID-19 pandemic has imposed severe health consequences on human health. Several countries of the world including Pakistan have studied its genome extensively and provided productive findings. In the current study, the mCSM, DynaMut2, and I-Mutant servers were used to analyze the effect of identified mutations on the structural stability of spike protein however, the molecular docking and simulations approaches were used to evaluate the dynamics of the bonding network between the wild-type and mutant spike proteins with furin. We addressed the mutational modifications that have occurred in the spike protein of SARS-COV-2 that were found in 215 Pakistani's isolates of COVID-19 patients to study the influence of mutations on the stability of the protein and its interaction with the host cell. We found 7 single amino acid substitute mutations in various domains that reside in spike protein. The H49Y, N74K, G181V, and G446V were found in the S1 domain while the D614A, V622F, and Q677H mutations were found in the central helices of the spike protein. Based on the observation, G181V, G446V, D614A, and V622F mutants were found highly destabilizing and responsible for structural perturbation. Protein-protein docking and molecular simulation analysis with that of furin have predicted that all the mutants enhanced the binding efficiency however, the V622F mutant has greatly altered the binding capacity which is further verified by the KD value (7.1 E-14) and therefore may enhance the spike protein cleavage by Furin and increase the rate of infectivity by SARS-CoV-2. On the other hand, the total binding energy for each complex was calculated which revealed -50.57 kcal/mol for the wild type, for G181V -52.69 kcal/mol, for G446V -56.44 kcal/mol, for D614A -59.78 kcal/mol while for V622F the TBE was calculated to be -85.84 kcal/mol. Overall, the current finding shows that these mutations have increased the binding of Furin for spike protein and shows that D614A and V622F have significant effects on the binding and infectivity.

18.
Heliyon ; 9(5): e16148, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234653

RESUMO

Streptococcus gordonii is an oral bacterium colonizing the dental cavity and leading to plaque formation. This pervasive colonizer is also the etiologic agent of bacterial endocarditis and has a major role in infective endocarditis. The bacteria reach the heart through oral bleeding, leading to inflammation of cardiovascular valves. Over the past 50 years, it has shown a significant pathogenic role in immunocompromised and neutropenic patients. Since antibiotic resistance has created prophylaxis failure towards infective endocarditis, a potent therapeutic candidate is needed. Therefore, multi-epitopes vaccine offers advantages over the other approaches. Thus, herein, numerous molecular-omics tools were exploited to mine immunogenic peptides, i.e., T-cell and B-cell epitopes, and construct a vaccine sequence. Our findings revealed a total of 24 epitopes, including CTL, HTL, and B-cell are responsible for imparting immune responses, which were combined with the help of different linkers, and MEVC was constructed. Multifactorial validation of the candidate vaccine was performed to minimize the risk factors. The final sequence was docked with TLR2 to validate its conformation compatibility with receptor and long-term interactions stability. Our analysis revealed that the vaccine construct is immunogenic and non-allergenic. The construct also established various contacts with the immune receptor. Finally, the vaccine sequence was reverse-translated, optimized for codon usage, and analyzed for expression in the Escherichia coli K12 strain. Maximum expression was noted with a CAI score of 0.95. In silico immune simulation revealed that the antigen was neutralized on the 3rd day after injection. In conclusion, the current study warrants validation of the vaccine construct both in in vitro and in vivo models for accurate therapeutic intervention.

19.
Ann Bot ; 109(1): 95-107, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22039008

RESUMO

BACKGROUND AND AIMS: Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern. METHODS: Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). KEY RESULTS: S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae. CONCLUSIONS: Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India.


Assuntos
Liliaceae/classificação , Liliaceae/genética , África Subsaariana , Teorema de Bayes , Evolução Molecular , Região do Mediterrâneo , Filogenia , Filogeografia , Análise de Sequência de DNA
20.
Int J Biol Macromol ; 200: 438-448, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063482

RESUMO

As SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) continues to inflict chaos globally, a new variant officially known as B.1.1.529 was reported in South Africa and was found to harbor 30 mutations in the spike protein. It is too early to speculate on transmission and hospitalizations. Hence, more analyses are required, particularly to connect the genomic patterns to the phenotypic attributes to reveal the binding differences and antibody response for this variant, which can then be used for therapeutic interventions. Given the urgency of the required analysis and data on the B.1.1.529 variant, we have performed a detailed investigation to provide an understanding of the impact of these novel mutations on the structure, function, and binding of RBD to hACE2 and mAb to the NTD of the spike protein. The differences in the binding pattern between the wild type and B.1.1.529 variant complexes revealed that the key substitutions Asn417, Ser446, Arg493, and Arg498 in the B.1.1.529 RBD caused additional interactions with hACE2 and the loss of key residues in the B.1.1.529 NTD resulted in decreased interactions with three CDR regions (1-3) in the mAb. Further investigation revealed that B.1.1.529 displayed a stable dynamic that follows a global stability trend. In addition, the dissociation constant (KD), hydrogen bonding analysis, and binding free energy calculations further validated the findings. Hydrogen bonding analysis demonstrated that significant hydrogen bonding reprogramming took place, which revealed key differences in the binding. The total binding free energy using MM/GBSA and MM/PBSA further validated the docking results and demonstrated significant variations in the binding. This study is the first to provide a basis for the higher infectivity of the new SARS-CoV-2 variants and provides a strong impetus for the development of novel drugs against them.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos/química , Anticorpos/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Humanos , Ligação de Hidrogênio , Evasão da Resposta Imune , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica/imunologia , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa