Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(9): 3793-3798, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30670642

RESUMO

Understanding how the brain translates a structured sequence of sounds, such as music, into a pleasant and rewarding experience is a fascinating question which may be crucial to better understand the processing of abstract rewards in humans. Previous neuroimaging findings point to a challenging role of the dopaminergic system in music-evoked pleasure. However, there is a lack of direct evidence showing that dopamine function is causally related to the pleasure we experience from music. We addressed this problem through a double blind within-subject pharmacological design in which we directly manipulated dopaminergic synaptic availability while healthy participants (n = 27) were engaged in music listening. We orally administrated to each participant a dopamine precursor (levodopa), a dopamine antagonist (risperidone), and a placebo (lactose) in three different sessions. We demonstrate that levodopa and risperidone led to opposite effects in measures of musical pleasure and motivation: while the dopamine precursor levodopa, compared with placebo, increased the hedonic experience and music-related motivational responses, risperidone led to a reduction of both. This study shows a causal role of dopamine in musical pleasure and indicates that dopaminergic transmission might play different or additive roles than the ones postulated in affective processing so far, particularly in abstract cognitive activities.


Assuntos
Encéfalo/fisiologia , Dopamina/metabolismo , Música , Prazer/fisiologia , Administração Oral , Adulto , Percepção Auditiva/fisiologia , Encéfalo/efeitos dos fármacos , Agonistas de Dopamina/administração & dosagem , Emoções/fisiologia , Feminino , Humanos , Levodopa/administração & dosagem , Masculino , Efeito Placebo , Recompensa , Risperidona/administração & dosagem , Adulto Jovem
2.
Neuroimage ; 210: 116520, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31917324

RESUMO

Previous research has described the process by which the interaction between the firing in midbrain dopamine neurons and the hippocampus results in promoting memory for high-value motivational and rewarding events, both extrinsically and intrinsically driven (i.e. curiosity). Studies on social cognition and gossip have also revealed the activation of similar areas from the reward network. In this study we wanted to assess the electrophysiological correlates of the anticipation and processing of novel information (as an intrinsic cognitive reward) depending on the degree of elicited curiosity and the content of the information. 24 healthy volunteers participated in this EEG experiment. The task consisted of 150 questions and answers divided into three different conditions: trivia-like questions, personal-gossip information about celebrities and personal-neutral information about the same celebrities. Our main results from the ERPs and time-frequency analysis pinpointed main differences for gossip in comparison with personal-neutral and trivia-like conditions. Specifically, we found an increase in beta oscillatory activity in the outcome phase and a decrease of the same frequency band in the expectation phase. Larger amplitudes in P300 component were also found for gossip condition. Finally, gossip answers were the most remembered in a one-week memory test. The arousing value and saliency of gossip information, its rewarding effect evidenced by the increase of beta oscillatory power and the recruitment of areas from the brain reward network in previous fMRI studies, as well as its potential social value have been argued in order to explain its differential processing, encoding and recall.


Assuntos
Antecipação Psicológica/fisiologia , Ritmo beta/fisiologia , Eletroencefalografia , Potenciais Evocados P300/fisiologia , Rememoração Mental/fisiologia , Recompensa , Percepção Social , Adulto , Comportamento Exploratório/fisiologia , Pessoas Famosas , Feminino , Humanos , Masculino , Adulto Jovem
3.
Cogn Affect Behav Neurosci ; 19(6): 1509-1520, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30993539

RESUMO

Gambling behavior presents a broad variety of individual differences, with a continuum ranging from nongamblers to pathological gamblers. The reward network has been proposed to be critical in gambling behavior, but little is known about the behavioral and neural mechanisms underlying individual differences that depend on gambling preference. The main goals of the present study were to explore brain oscillatory responses to gambling outcomes in regular gamblers and to assess differences between strategic gamblers, nonstrategic gamblers, and nongamblers. In all, 54 healthy volunteers participated in the study. Electroencephalography was recorded while participants were playing a slot machine task that delivered win, near-miss, and full-miss outcomes. Behaviorally, regular gamblers selected a larger percentage of risky bets, especially when they could select the image to play. The time-frequency results showed larger oscillatory theta power increases to near-misses and increased beta power to win outcomes for regular gamblers, as compared to nongamblers. Moreover, theta oscillatory activity after wins was only increased in nonstrategic gamblers, revealing differences between the two groups of gamblers. The present results reveal differences between regular gamblers and nongamblers in both their behavioral and neural responses to gambling outcomes. Moreover, the results suggest that different brain oscillatory mechanisms might underlie the studied gambling profiles, which might have implications for both basic and clinical studies.


Assuntos
Ondas Encefálicas/fisiologia , Jogo de Azar/fisiopatologia , Recompensa , Eletroencefalografia , Feminino , Jogos Experimentais , Humanos , Masculino , Adulto Jovem
4.
Brain Imaging Behav ; 15(4): 1886-1897, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32926315

RESUMO

Present project is concerned with the possibility to modulate the neural regulation of food intake by non-invasive stimulation of the vagus nerve. This nerve carries viscero-afferent information from the gut and other internal organs and therefore serves an important role in ingestive behavior. The electrical stimulation of the vagus nerve (VNS) is a qualified procedure in the treatment of drug-resistant epilepsy and depression. Since weight loss is a known common side effect of VNS treatment in patients with implanted devices, VNS is evaluated as a treatment of obesity. To investigate potential VNS-related changes in the cognitive processing of food-related items, 21 healthy participants were recorded in a 3-Tesla scanner in two counterbalanced sessions. Participants were presented with 72 food pictures and asked to rate how much they liked that food. Before entering the scanner subjects received a 1-h sham or verum stimulation, which was implemented transcutanously with a Cerbomed NEMOS® device. We found significant activations in core areas of the vagal afferent pathway, including left brainstem, thalamus, temporal pole, amygdala, insula, hippocampus, and supplementary motor area for the interaction between ratings (high vs low) and session (verum vs sham stimulation). Significant activations were also found for the main effect of verum compared to sham stimulation in the left inferior and superior parietal cortex. These results demonstrate an effect of tVNS on food image processing even with a preceding short stimulation period. This is a necessary prerequisite for a therapeutic application of tVNS which has to be evaluated in longer-term studies.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Cognição , Humanos , Imageamento por Ressonância Magnética , Percepção Visual
5.
Front Hum Neurosci ; 14: 206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625072

RESUMO

Background: The vagus nerve plays an important role in the regulation of food intake. Modulating vagal activity via electrical stimulation (VNS) in patients and animal studies caused changes in food intake, energy metabolism, and body weight. However, the moderating impact of cognitive processes on VNS effects on eating behavior has not been investigated so far. Hypothesis: We hypothesized that transcutaneous VNS (tVNS) affects food intake by altering cognitive functions relevant to the processing of food-related information. Methods: Using a repeated-measurement design, we applied tVNS and a sham stimulation for 2 h on two different days in normal-weight subjects. We recorded standard scalp EEG while subjects watched food and object pictures presented in an oddball task. We analyzed the event-related potentials (ERPs) P1, P2, N2, and LPP and also examined the amount of consumed food and eating duration in a free-choice test meal. Results: Significant differences between stimulations were observed for the P1, P2, and N2 amplitudes. However, we found no tVNS-dependent modulation of food intake nor a specific food-related stimulation effect on the ERPs. Further analyses revealed a negative relationship between P2 amplitude and food intake for the sham stimulation. Significant effects are additionally confirmed by Bayesian statistics. Conclusion: Our study demonstrates tVNS' impact on visual processing. Since the effects were similar between food and object stimuli, a general effect on visual perceptual processing can be assumed. More detailed investigations of these effects and their relationship with food intake and metabolism seem reasonable for future studies.

6.
Elife ; 72018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30160651

RESUMO

We recently provided evidence that an intrinsic reward-related signal-triggered by successful learning in absence of any external feedback-modulated the entrance of new information into long-term memory via the activation of the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop; Ripollés et al., 2016). Here, we used a double-blind, within-subject randomized pharmacological intervention to test whether this learning process is indeed dopamine-dependent. A group of healthy individuals completed three behavioral sessions of a language-learning task after the intake of different pharmacological treatments: a dopaminergic precursor, a dopamine receptor antagonist or a placebo. Results show that the pharmacological intervention modulated behavioral measures of both learning and pleasantness, inducing memory benefits after 24 hr only for those participants with a high sensitivity to reward. These results provide causal evidence for a dopamine-dependent mechanism instrumental in intrinsically regulated learning and further suggest that subject-specific reward sensitivity drastically alters learning success.


Assuntos
Dopamina/metabolismo , Aprendizagem/fisiologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Adulto , Carbidopa/farmacologia , Dopaminérgicos/farmacologia , Antagonistas de Dopamina/farmacologia , Método Duplo-Cego , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Levodopa/farmacologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Recompensa , Risperidona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
7.
Elife ; 52016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27644419

RESUMO

Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic-potentially reward-related-signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain.


Assuntos
Hipocampo/fisiologia , Aprendizagem , Memória , Mesencéfalo/fisiologia , Estriado Ventral/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
8.
Soc Cogn Affect Neurosci ; 10(10): 1405-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25809401

RESUMO

Near-miss events are situations in which an action yields a negative result but is very close to being successful. They are known to influence behavior, especially in gambling scenarios. Previous neuroimaging studies have described an 'anomalous' activity of brain reward areas following these events. The goal of the present research was to study electrophysiological correlates of near-misses in the expectation and outcome phases. Electroencephalography was recorded while participants were playing a simplified version of a slot machine. Four possible outcomes (gain, near-miss, loss and no-information) were presented in a pseudorandom order to ensure fixed proportions. Results from the time-frequency analysis for the theta (4-8 Hz), alpha (9-13 Hz), low beta (15-22 Hz) and beta-gamma (25-35 Hz) frequency-bands presented larger power increases for wins and near-misses compared with losses. In the anticipation phase, power changes were lower than in the resolution phase. The current results are in agreement with previous studies showing that near-miss events recruit brain areas of the reward network. Likewise, the oscillatory activity in near-misses is very similar to the one elicited in the gain condition. In addition, present findings suggest that oscillatory activity in the expectation phase does not play a crucial role in near-miss events.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia , Potenciais Evocados , Recompensa , Adulto , Feminino , Jogo de Azar/fisiopatologia , Jogo de Azar/psicologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa