Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 117: 103179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042061

RESUMO

PURPOSE: As the dosimetry protocol TRS 398 is being revised and the ICRU report 90 provides new recommendations for density correction as well as the mean ionization energies of water and graphite, updated beam quality correction factors kQ are calculated for reference dosimetry in electron beams and for independent validation of previously determined values. METHODS: Monte Carlo simulations have been performed using EGSnrc to calculate the absorbed dose to water and the dose to the active volumes of ionization chambers SNC600c, SNC125c and SNC350p (all Sun Nuclear, A Mirion Medical Company, Melbourne, FL). Realistic clinical electron beam spectra were used to cover the entire energy range of therapeutic electron accelerators. The Monte Carlo simulations were validated by measurements on a clinical linear accelerator. With regards to the cylindrical chambers, the simulations were performed according to the setup recommendations of TRS 398 and AAPM TG 51, i.e. with and without consideration of a reference point shift by rcav/2. RESULTS: kQ values as a function of the respective beam quality specifier R50 were fitted by recommended equations for electron beam dosimetry in the range of 5 MeV to 18 MeV. The fitting curves to the calculated values showed a root mean square deviation between 0.0016 and 0.0024. CONCLUSION: Electron beam quality correction factors kQ were calculated by Monte Carlo simulations for the cylindrical ionization chambers SNC600c and SNC125c as well as the plane parallel ionization chamber SNC350p to provide updated data for the TRS 398 and TG 51 dosimetry protocols.


Assuntos
Elétrons , Fenilpropionatos , Radiometria , Radiometria/métodos , Eficiência Biológica Relativa , Método de Monte Carlo , Água
2.
Z Med Phys ; 33(4): 499-510, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030166

RESUMO

PURPOSE: Monte Carlo simulations are crucial for calculating magnetic field correction factors kB for the dosimetry in external magnetic fields. As in Monte Carlo codes the charged particle transport is performed in straight condensed history (CH) steps, the curved trajectories of these particles in the presence of external magnetic fields can only be approximated. In this study, the charged particle transport in presence of a strong magnetic field B→ was investigated using the Fano cavity test. The test was performed in an ionization chamber and a diode detector, showing how the step size restrictions must be adjusted to perform a consistent charged particle transport within all geometrical regions. METHODS: Monte Carlo simulations of the charged particle transport in a magnetic field of 1.5 T were performed using the EGSnrc code system including an additional EMF-macro for the transport of charged particle in electro-magnetic fields. Detailed models of an ionization chamber and a diode detector were placed in a water phantom and irradiated with a so called Fano source, which is a monoenergetic, isotropic electron source, where the number of emitted particles is proportional to the local density. RESULTS: The results of the Fano cavity test strongly depend on the energy of charged particles and the density within the given geometry. By adjusting the maximal length of the charged particle steps, it was possible to calculate the deposited dose in the investigated regions with high accuracy (<0.1%). The Fano cavity test was performed in all regions of the detailed detector models. Using the default value for the step size in the external magnetic field, the maximal deviation between Monte Carlo based and analytical dose value in the sensitive volume of the ion chamber and diode detector was 8% and 0.1%, respectively. CONCLUSIONS: The Fano cavity test is a crucial validation method for the modeled detectors and the transport algorithms when performing Monte Carlo simulations in a strong external magnetic field. Special care should be given, when calculating dose in volumes of low density. This study has shown that the Fano cavity test is a useful method to adapt particle transport parameters for a given simulation geometry.


Assuntos
Algoritmos , Radiometria , Método de Monte Carlo , Transporte de Elétrons , Simulação por Computador , Radiometria/métodos , Campos Magnéticos
3.
Med Phys ; 50(4): 2552-2559, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36604950

RESUMO

PURPOSE: Multi-axis ionization chamber arrays can be used for quality assurance (QA) and measurement of linear accelerator (linac) specific data. In this work, the ability of the IC Profiler (Sun Nuclear Corp., Melbourne, Florida) detector array to measure the photon beam quality specifier %dd(10) x $_\textrm {{\it x}}$ and TPR20, 10 was investigated. To investigate the method for beam energy QA using a two-dimensional detector array, a Monte Carlo-based model of the detector array was developed and validated. METHODS: A Monte Carlo-based model of the IC Profiler detector array with Quad Wedge accessories was developed in detail from drawings provided by the manufacturer using the egs++ class library from the EGSnrc code system. Monte Carlo simulations were used to calculate the absorbed dose in the 251 ionization chambers of the IC profiler in the 6 MV Elekta Precise radiation field. To validate the results from the Monte Caro simulations, measurements were performed on clinical 6 MV linacs. To vary the photon beam quality of the Elekta 6 MV linac, the current of the bending magnet was varied. Furthermore, the area ratio A R $AR$ was calculated from IC Profiler measurements with the Quad Wedge accessories. RESULTS: Measurements as well as Monte Carlo simulations confirmed the linear relationship between the area ratio A R $AR$ and the investigated photon beam quality specifier %dd(10) x $_\textrm {{\it x}}$ and TPR20, 10 for the investigated radiation source. Furthermore, the Monte Carlo-simulated data were within the 95% confidence interval of the linear fit to the measured data. This enabled the Monte Carlo-based IC Profiler model to be used for further investigations. The A R $AR$ values were calculated for various electron beam sizes and the angle of incidence on the target of the linac. CONCLUSIONS: A Monte-Carlo-based model of the detector array was developed, which could successfully reproduce measurements, demonstrating that even very complex geometries can be modeled in EGSnrc. Moreover, the study showed that the validated Monte Carlo model has the potential to investigate variations in beam parameters and their effects on AR ratios and %dd(10) x $_\textrm {{\it x}}$ that may not be investigated experimentally. While these findings may help users gain a deeper understanding of the QA method, the Monte Carlo model enables other complex investigations, such as the simulation of measurements in the presence of magnetic fields, or the simulation of measurements on novel treatment delivery techniques and devices.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Método de Monte Carlo , Campos Magnéticos , Radiometria/métodos , Fótons
4.
Med Phys ; 50(7): 4578-4589, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36897832

RESUMO

BACKGROUND: The integration of magnetic resonance tomography into clinical linear accelerators provides high-contrast, real-time imaging during treatment and facilitates online-adaptive workflows in radiation therapy treatments. The associated magnetic field also bends the trajectories of charged particles via the Lorentz force, which may alter the dose distribution in a patient or a phantom and affects the dose response of dosimetry detectors. PURPOSE: To perform an experimental and Monte Carlo-based determination of correction factors k B , Q $k_{B,Q}$ , which correct the response of ion chambers in the presence of external magnetic fields in high-energy photon fields. METHODS: The response variation of two different types of ion chambers (Sun Nuclear SNC125c and SNC600c) in strong external magnetic fields was investigated experimentally and by Monte Carlo simulations. The experimental data were acquired at the German National Metrology Institute, PTB, using a clinical linear accelerator with a nominal photon energy of 6 MV and an external electromagnet capable of generating magnetic flux densities of up to 1.5 T in opposite directions. The Monte Carlo simulation geometries corresponded to the experimental setup and additionally to the reference conditions of IAEA TRS-398. For the latter, the Monte Carlo simulations were performed with two different photon spectra: the 6 MV spectrum of the linear accelerator used for the experimental data acquisition and a 7 MV spectrum of a commercial MRI-linear accelerator. In each simulation geometry, three different orientations of the external magnetic field, the beam direction and the chamber orientation were investigated. RESULTS: Good agreement was achieved between Monte Carlo simulations and measurements with the SNC125c and SNC600c ionization chambers, with a mean deviation of 0.3% and 0.6%, respectively. The magnitude of the correction factor k B , Q $k_{B,Q}$ strongly depends on the chamber volume and on the orientation of the chamber axis relative to the external magnetic field and the beam directions. It is greater for the SNC600c chamber with a volume of 0.6 cm3 than for the SNC125c chamber with a volume of 0.1 cm3 . When the magnetic field direction and the chamber axis coincide, and they are perpendicular to the beam direction, the ion chambers exhibit a calculated overresponse of less than 0.7(6)% (SNC600c) and 0.3(4)% (SNC125c) at 1.5 T and less than 0.3(0)% (SNC600c) and 0.1(3)% (SNC125c) for 0.35 T for nominal beam energies of 6 MV and 7 MV. This chamber orientation should be preferred, as k B , Q $k_{B,Q}$ may increase significantly in other chamber orientations. Due to the special geometry of the guard ring, no dead-volume effects have been observed in any orientation studied. The results show an intra-type variation of 0.17% and 0.07% standard uncertainty (k=1) for the SNC125c and SNC600c, respectively. CONCLUSION: Magnetic field correction factors k B , Q $k_{B,Q}$ for two different ion chambers and for typical clinical photon beam qualities were presented and compared with the few data existing in the literature. The correction factors may be applied in clinical reference dosimetry for existing MRI-linear accelerators.


Assuntos
Fótons , Radiometria , Humanos , Método de Monte Carlo , Fótons/uso terapêutico , Imageamento por Ressonância Magnética , Campos Magnéticos
5.
Phys Med ; 94: 17-23, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34972070

RESUMO

PURPOSE: Although several studies provide data for reference dosimetry, the SNC600c and SNC125c ionization chambers (Sun Nuclear Corporation, Melbourne, FL) are in clinical use worldwide for which no beam quality correction factors kQ are available. The goal of this study was to calculate beam quality correction factors kQ for these ionization chambers according to dosimetry protocols TG-51, TRS 398 and DIN 6800-2. METHODS: Monte Carlo simulations using EGSnrc have been performed to calculate the absorbed dose to water and the dose to air within the active volume of ionization chamber models. Both spectra and simulations of beam transport through linear accelerator head models were used as radiation sources for the Monte Carlo calculations. RESULTS: kQ values as a function of the respective beam quality specifier Q were fitted against recommended equations for photon beam dosimetry in the range of 4 MV to 25 MV. The fitting curves through the calculated values showed a root mean square deviation between 0.0010 and 0.0017. CONCLUSIONS: The investigated ionization chamber models (SNC600c, SNC125c) are not included in above mentioned dosimetry protocols, but are in clinical use worldwide. This study covered this knowledge gap and compared the calculated results with published kQ values for similar ionization chambers. Agreements with published data were observed in the 95% confidence interval, confirming the use of data for similar ionization chambers, when there are no kQ values available for a given ionization chamber.


Assuntos
Aceleradores de Partículas , Radiometria , Método de Monte Carlo , Fótons , Eficiência Biológica Relativa , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa