Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612893

RESUMO

Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proliferação de Células , Quimioterapia Adjuvante , Hiperplasia , Neoplasias/tratamento farmacológico
2.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791499

RESUMO

The activation of caspases is a crucial event and an indicator of programmed cell death, also known as apoptosis. These enzymes play a central role in cancer biology and are considered one promising target for current and future advancements in therapeutic interventions. Traditional methods of measuring caspase activity such as antibody-based methods provide fundamental insights into their biological functions, and are considered essential tools in the fields of cell and cancer biology, pharmacology and toxicology, and drug discovery. However, traditional methods, though extensively used, are now recognized as having various shortcomings. In addition, these methods fall short of providing solutions to and matching the needs of the rapid and expansive progress achieved in studying caspases. For these reasons, there has been a continuous improvement in detection methods for caspases and the network of pathways involved in their activation and downstream signaling. Over the past decade, newer methods based on cutting-edge state-of-the-art technologies have been introduced to the biomedical community. These methods enable both the temporal and spatial monitoring of the activity of caspases and their downstream substrates, and with enhanced accuracy and precision. These include fluorescent-labeled inhibitors (FLIs) for live imaging, single-cell live imaging, fluorescence resonance energy transfer (FRET) sensors, and activatable multifunctional probes for in vivo imaging. Recently, the recruitment of mass spectrometry (MS) techniques in the investigation of these enzymes expanded the repertoire of tools available for the identification and quantification of caspase substrates, cleavage products, and post-translational modifications in addition to unveiling the complex regulatory networks implicated. Collectively, these methods are enabling researchers to unravel much of the complex cellular processes involved in apoptosis, and are helping generate a clearer and comprehensive understanding of caspase-mediated proteolysis during apoptosis. Herein, we provide a comprehensive review of various assays and detection methods as they have evolved over the years, so to encourage further exploration of these enzymes, which should have direct implications for the advancement of therapeutics for cancer and other diseases.


Assuntos
Caspases , Caspases/metabolismo , Humanos , Animais , Apoptose , Transferência Ressonante de Energia de Fluorescência/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Inibidores de Caspase/farmacologia , Corantes Fluorescentes/química
3.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834454

RESUMO

This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.


Assuntos
Neoplasias , Somatomedinas , Humanos , Insulina/metabolismo , Receptor de Insulina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Insulina Regular Humana , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Carcinogênese/genética , Fator de Crescimento Insulin-Like I/metabolismo
4.
Curr Issues Mol Biol ; 44(12): 6117-6131, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547078

RESUMO

The COVID-19 pandemic necessitated an extensive testing for active SARS-CoV-2 infection. However, securing affordable diagnostic tests is a struggle for low-resource settings. We report herein the development and validation of an in-house multiplex real-time RT-PCR diagnostic test for the detection of active COVID-19 infection (ScriptTaq COVID PCR). Furthermore, we describe two methods for RNA extraction using either an in-house silica column or silica-coated magnetic beads to replace commercial RNA extraction kits. Different buffer formulations for silica column and silica-coated magnetic beads were tested and used for RNA isolation. Taq polymerase enzyme and thermostable reverse transcriptase enzyme were purified from bacterial clones. Primers/probes sequences published by the WHO and CDC were used for the qualitative detection of the RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) genes, respectively. ScriptTaq COVID PCR assay was able to detect up to 100 copies per reaction of the viral RdRP and N genes. The test demonstrated an overall agreement of 95.4%, a positive percent agreement (PPA) of 90.2%, and a negative percent agreement (NPA) of 100.0% when compared with two commercially available kits. ScriptTaq COVID PCR diagnostic test is a specific, sensitive, and low-cost alternative for low-resource settings.

5.
Medicina (Kaunas) ; 58(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557031

RESUMO

Background and Objectives: Visceral obesity is associated with chronic low-grade inflammation that predisposes to metabolic syndrome. Indeed, infiltration of adipose tissue with immune-inflammatory cells, including 'classical' inflammatory M1 and anti-inflammatory 'alternative' M2 macrophages, causes the release of a variety of bioactive molecules, resulting in the metabolic complications of obesity. This study examined the relative expression of macrophage phenotypic surface markers, cholesterol efflux proteins, scavenger receptors, and adenosine receptors in human circulating peripheral blood mononuclear cells (PBMCs), isolated from patients with type 2 diabetes mellitus (T2DM), with the aim to phenotypically characterize and identify biomarkers for these ill-defined cells. Materials and Methodology: PBMCs were isolated from four groups of adults: Normal-weight non-diabetic, obese non-diabetic, newly diagnosed with T2DM, and T2DM on metformin. The mRNA expression levels of macrophage phenotypic surface markers (interleukin-12 (IL-12), C-X-C motif chemokine ligand 10 (CXCL10), C-C motif chemokine ligand 17 (CCL17), and C-C motif receptor 7 (CCR7)), cholesterol efflux proteins (ATP-binding cassette transporter-1 (ABCA1), ATP binding cassette subfamily G member 1 (ABCG1), and sterol 27-hydroxylase (CYP27A)), scavenger receptors (scavenger receptor-A (SR-A), C-X-C motif ligand 16 (CXCL16), and lectin-like oxidized LDL receptor-1 (LOX-1)), and adenosine receptors (adenosine A2A receptor (A2AR) and adenosine A3 receptor (A3R)) were measured using qRT-PCR. Results: In PBMCs from T2DM patients, the expression of IL-12, CCR7, ABCA1, and SR-A1 was increased, whereas the expression of CXCL10, CCL17, ABCG1,27-hydroxylase, LOX-1, A2AR and A3R was decreased. On the other hand, treatment with the antidiabetic drug, metformin, reduced the expression of IL-12 and increased the expression of 27-hydroxylase, LOX-1, CXCL16 and A2AR. Conclusions: PBMCs in the circulation of patients with T2DM express phenotypic markers that are different from those typically present in adipose tissue M1 and M2 macrophages and could be representative of metabolically activated macrophages (MMe)-like cells. Our findings suggest that metformin alters phenotypic markers of MMe-like cells in circulation.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Adulto , Humanos , Transportador 1 de Cassete de Ligação de ATP/genética , Colesterol , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Perfilação da Expressão Gênica , Interleucina-12 , Leucócitos Mononucleares , Ligantes , Metformina/metabolismo , Obesidade/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Receptores Depuradores Classe E
6.
Malar J ; 20(1): 376, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551786

RESUMO

BACKGROUND: The FcγRs genotypes have been reported to play a key role in the defence against malaria parasites through both cellular and humoral immunity. This study aimed to investigate the possible correlation between FcγR (IIa, IIIa, and IIIb) genes polymorphism and the clinical outcome for anti-malarial antibody response of Plasmodium falciparum infection among Saudi children. METHODS: A total of 600 volunteers were enrolled in this study, including 200 malaria-free control (MFC) subjects, 218 patients with uncomplicated malaria (UM) and 182 patients with severe malaria (SM). The FcγR genotypes were analysed using PCR amplification methods, and measurements of immunoglobulin were determined using enzyme-linked immunosorbent assay (ELISA) technique. RESULTS: The data revealed that the FcγRIIa-R/R131 showed a statistically significant association with SM patients when compared to UM patients. Furthermore, higher levels of IgG1, IgG2, and IgG4 were associated with the FcγRIIa-H/H131 genotype among UM patients. Although the FcγRIIa-F/V176 genotype was not associated with UM, it showed a significant association with severe malaria. Interestingly, the FcγRIIIa-V/V176 genotype offered protection against SM. Moreover, SM patients carrying the FcγRIIIa-F/F genotype showed higher levels of AMA-1-specific IgG2 and IgG4 antibodies. The FcγRIIIb-NA1/NA1 and FcγRIIIb-NA2/NA2 genotypes did not show significant differences between the UM and the MFC groups. However, the genotype FcγRIIIb-NA2/NA2 was statistically significantly associated with SM patients. CONCLUSIONS: The data presented in this study suggest that the influence of the FcγRIIa-R/R131, FcγRIIIa-F/F176 and FcγRIIIb-NA2/NA2 genotypes are statistically significantly associated with SM patients. However, the FcγRIIa-H/H13 and FcγRIIIa-V/V176 genotypes have demonstrated a protective effect against SM when compared to UM patients. The impact of the FcyR (IIa, IIIa and IIIb) gene variants and anti-malaria IgG subclasses play an important role in susceptibility to malaria infection and disease outcome in Saudi children.


Assuntos
Malária Falciparum/genética , Polimorfismo Genético , Receptores de IgG/genética , Criança , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunoglobulina G , Masculino , Receptores de IgG/metabolismo , Arábia Saudita
7.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999625

RESUMO

Lamin A/C proteins have key roles in nuclear structural integrity and chromosomal stability. Lamin A/C cumulative protein expression of all variants is reported by semi-quantitative Western blotting. To date, there have not been specific antibodies for the individual Lamin A/C transcript variants. We developed a mass spectrometric approach for the quantification of Lamin A/C transcript variants. A signature peptide for each specific splice variant of Lamin A/C was selected. A LC-MS/MS assay based on the selected signature peptides and their labeled internal standards was established to measure the expression of Lamin A/C transcript variant concentrations. The method validation was carried out according to Food and Drug Administration (FDA) guidelines. The expression levels of the Lamin A/C transcript variants were measured in samples derived from MCF7 and U937 cell lines. RT-qPCR assay was also used to quantitate and compare the mRNA expression of splice variants of Lamin A/C. The established and validated method showed a great linearity, sensitivity, and precision. The different expressed Lamin A/C variants in different cell lines were measured and their levels were in concordance with qRT-PCR results. The developed method is reproducible, reliable, and sensitive for measuring different Lamin A/C transcript variants in different cell lines.


Assuntos
Lamina Tipo A/genética , RNA Mensageiro/genética , Cromatografia Líquida/métodos , Humanos , Células MCF-7 , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Transcrição Gênica , Células U937
8.
Apoptosis ; 21(7): 873-86, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27154302

RESUMO

Natural and chemically synthesized heterocyclic compounds have been explored for their potential use as anticancer agents. We had synthesized non-natural heterocyclic analogs and evaluated their anti-tumor activity by measuring effect on cell proliferation and induction of apoptosis in different cell lines. Previously, we identified a pyrazole-containing compound (G-11) showing cytotoxic effect towards leukemia and lymphoma cell lines. In this study, we further investigated the mechanistic aspects of anticancer properties of G-11 in HL-60 cell line. We demonstrated that cytotoxic effect of G-11 is mediated by caspase-dependent apoptosis. However, the involvement of mitochondrial dysfunction induced by G-11 was independent of caspases. G-11 triggered generation of ROS, caused disruption of mitochondrial transmembrane potential, increased release of cytochrome c to the cytosol, and altered the expression of Bcl-2 and Bax proteins. These results suggest significant involvement of intrinsic apoptotic pathway. This study comprehensively details the possible mechanisms of action of a novel heterocyclic compound which could find its potential use as an anticancer agent.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Compostos Heterocíclicos/toxicidade , Caspases/genética , Citocromos c/metabolismo , Células HL-60 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Cell Physiol Biochem ; 35(5): 1943-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870953

RESUMO

BACKGROUND/AIMS: The antileukemic potential of isoindigos make them desired candidates for understanding their mechanism of action. We have recently synthesized a novel group of pyridone-annelated isoindigos and identified the derivative 5'-Cl that is cytotoxic to various cancer cell lines. In the present study, we analyzed the effect of this compound on cell cycle of the promyelocytic leukemia cell line HL-60. METHODS: HL-60 cells were treated with 5'-Cl and its effect on cell cycle stages were determined by flow cytometry. Expression of cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) were determined by Western blotting, and activation of CDKs was studied using kinase assays. RESULTS: 5'-Cl remarkably arrested cell cycle in HL-60 cells at the G0/G1 phase in a dose and time-dependent manner. Furthermore, 5'-Cl treatment significantly inhibited expression of D-cyclins, CDK2 and CDK4 and suppressed phosphorylation of the retinoblastoma protein Rb, whereas it increased the level of CKI p21. Molecular modelling experiments show that 5'-Cl may compete with ATP for binding to the catalytic subunit of CDK2 and CDK4 that could lead to inhibition of these enzymes. Indeed, 5'-Cl inhibited the kinase activity of CDK2 and CDK4 both in cell free systems and in treated cells. 5'-Cl also inhibited cell cycle progression in several other tumor cell lines. CONCLUSION: We demonstrate the potent inhibitory effects of 5'-Cl on HL-60 cells could be mediated by arresting cells in the G0/G1 phase.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Piridonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Indóis/química , Indóis/farmacologia , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Simulação de Acoplamento Molecular , Fosforilação , Piridonas/farmacologia , Proteína do Retinoblastoma/metabolismo
10.
Cell Physiol Biochem ; 35(5): 1958-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25871324

RESUMO

BACKGROUND/AIMS: In our quest to develop an isoindigo with improved efficacy and bioavailability, we recently synthesized a series of novel substituted pyridone-annelated isoindigo and evaluated their antiproliferative effects. We identified the compound [(E)-1-(5'-Chloro-2'-oxoindolin-3'-ylidene)-6-ethyl-2,3,6,9-tetrahydro-2,9-dioxo-1H-pyrrolo[3,2-f] quinoline-8-carboxylic acid], abbreviated as 5'-Cl, which shows selective antiproliferative activities against various cancer cell lines mediated through apoptosis. Here we have investigated the molecular mechanisms underlying the apoptotic activity of 5'-Cl in the human promyelocytic leukemia HL-60 cells. METHODS: We employed different methods to determine the apoptotic pathways triggered by 5'-Cl in HL-60 cells, using flow cytometry, nuclear staining, caspases activation, mitochondria functioning, generation of reactive oxygen species (ROS) and Western blotting techniques. RESULTS: Low concentrations (1-8 µM) of 5'-Cl inhibited the growth of HL-60 cells in a dose and time-dependent manner. Cytotoxicity of this compound is found to be mediated by a caspase-dependent apoptosis. Also, there were indications of caspase independent apoptosis as z-VAD-FMK failed to fully rescue the cells from 5'-Cl-induced apoptosis. In addition, the compound triggered generation of Reactive Oxygen Species (ROS), caused depolarization of the mitochondrial inner membrane, decreased the level of cellular ATP, modulated the expression and phosphorylation of Bcl-2 leading to loss of its association with Bax and increased the release of cytochrome c to the cytosol of treated cells. The effects of 5'-Cl on mitochondria and apoptosis were substantially blocked in the presence of a combination between z-VAD-FMK and either of the ROS scavenger N-acetyl-L-cysteine (NAC) or pyrrolidine dithiocarbamate (PDTC). CONCLUSION: We demonstrated that the growth inhibitory effects of 5'-Cl in HL-60 cells involve multiple pathways of apoptosis and dysregulation of mitochondrial functions.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Piridonas/química , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Caspases/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Células HL-60 , Humanos , Indóis/química , Indóis/farmacologia , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piridonas/farmacologia , Pirrolidinas/farmacologia , Tiocarbamatos/farmacologia , Proteína X Associada a bcl-2/metabolismo
11.
BMC Complement Altern Med ; 14: 226, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25002129

RESUMO

BACKGROUND: The essential oil (EO) of Artemisia vulgaris L. has been traditionally used worldwide for treating a large number of diseases. Although major components in A. vulgaris EO have been shown to inhibit growth of different cancer cells, as pure compounds or part of other plants extracted oil, no information is known about its anti-proliferative activities. Therefore, the current investigation has evaluated the toxicity of the plant extracted oil from buds (AVO-b) and leaves (AVO-l) and characterized their growth inhibitory effects on cancer cells. METHODS: AVO-b and AVO-l from A. vulgaris L. were extracted by hydrodistillation, and their effect on the viability of human HL-60 promyelocytic leukemia and various other cancer cell lines was tested using MTT assay. Flow cytometric analysis of apoptosis, DNA fragmentation assay, caspases enzymatic activities and Western blotting were used to determine the apoptotic pathway triggered by their action on HL-60 cells. RESULTS: Low concentrations of AVO-b and AVO-l inhibited the growth of HL-60 cells in a dose- and time-dependent manner. Employing flow cytometric, DNA fragmentation and caspase activation analyses, demonstrated that the cytotoxic effect of the oils is mediated by a caspase-dependent apoptosis. Kinetic studies in the presence and absence specific caspase inhibitors showed that activation of caspase-8 was dependent and subsequent to the activation of caspases-9 and -3. In addition, the essential oil caused a disruption of the mitochondrial transmembrane potential (ΔΨm), increased the release of cytochrome c to the cytosol, and altered the expression of certain members of Bcl-2 family (Bcl-2, Bax and Bid), Apaf-1 and XIAP. Interestingly, low doses of AVO-b and AVO-1 also induced apoptosis in various cancer cell lines, but not in noncancerous cells. CONCLUSIONS: The results demonstrate that the EO-induced apoptosis in HL-60 cells is mediated by caspase-dependent pathways, involving caspases-3, -9, and -8, which are initiated by Bcl-2/Bax/Bid-dependent loss of ΔΨm leading to release of cytochrome c to the cytoplasm to activate the caspase cascade. The finding that AVO-b and AVO-l are more efficient to induce apoptosis in different cancer cell lines than noncancerous cells, suggests that A. vulgaris might be a promising source for new anticancer agents.


Assuntos
Apoptose/efeitos dos fármacos , Artemisia/química , Mitocôndrias/efeitos dos fármacos , Óleos Voláteis/farmacologia , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Células HL-60 , Humanos , Óleos Voláteis/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
12.
Molecules ; 19(9): 13076-92, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25157470

RESUMO

A selected set of substituted pyridone-annelated isoindigos 3a-f has been synthesized via interaction of 5- and 6-substituted oxindoles 2a-f with 6-ethyl-1,2,9-trioxopyrrolo[3,2-f]quinoline-8-carboxylic acid (1) in acetic acid at reflux. Among these isoindigos, the 5'-chloro and 5'-bromo derivatives 3b and 3d show strong and selective antiproliferative activities against a panel of human hematological and solid tumor cell-lines, but not against noncancerous cells, suggesting their potential use as anticancer agents. In all the tested cell lines, compound 3b was a 25%-50% more potent inhibitor of cell growth than 3d, suggesting the critical role of the substitution at 5'-position of the benzo-ring E. The IC50 values after 48 hours incubation with the 5'-chloro compound 3b were 6.60 µM in K562, 8.21 µM in THP-1, 8.97 µM in HepG2, 11.94 µM in MCF-7 and 14.59 µM in Caco-2 cancer cells, while the IC50 values in noncancerous HEK-293 and L-929 were 30.65 µM and 40.40 µM, respectively. In addition, compound 3b induced higher levels apoptosis in K562 cells than 3d, as determined by annexin V/7-AAD flowcytometry analysis. Therefore, further characterization of the antitproliferative mechanisms of compounds 3b and 3d may provide a novel chemotherapeutic agents.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Piridonas/química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Células CACO-2 , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Células K562 , Oxindóis , Piridonas/farmacologia
13.
Cells ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920652

RESUMO

Mesenchymal stem cells (MSCs) of placental origin hold great promise in tissue engineering and regenerative medicine for diseases affecting cartilage and bone. However, their utility has been limited by their tendency to undergo premature senescence and phenotypic drift into adipocytes. This study aimed to explore the potential involvement of a specific subset of aging and antiaging genes by measuring their expression prior to and following in vitro-induced differentiation of placental MSCs into chondrocytes and osteoblasts as opposed to adipocytes. The targeted genes of interest included the various LMNA/C transcript variants (lamin A, lamin C, and lamin A∆10), sirtuin 7 (SIRT7), and SM22α, along with the classic aging markers plasminogen activator inhibitor 1 (PAI-1), p53, and p16INK4a. MSCs were isolated from the decidua basalis of human term placentas, expanded, and then analyzed for phenotypic properties by flow cytometry and evaluated for colony-forming efficiency. The cells were then induced to differentiate in vitro into chondrocytes, osteocytes, and adipocytes following established protocols. The mRNA expression of the targeted genes was measured by RT-qPCR in the undifferentiated cells and those fully differentiated into the three cellular lineages. Compared to undifferentiated cells, the differentiated chondrocytes demonstrated decreased expression of SIRT7, along with decreased PAI-1, lamin A, and SM22α expression, but the expression of p16INK4a and p53 increased, suggesting their tendency to undergo premature senescence. Interestingly, the cells maintained the expression of lamin C, which indicates that it is the primary lamin variant influencing the mechanoelastic properties of the differentiated cells. Notably, the expression of all targeted genes did not differ from the undifferentiated cells following osteogenic differentiation. On the other hand, the differentiation of the cells into adipocytes was associated with decreased expression of lamin A and PAI-1. The distinct patterns of expression of aging and antiaging genes following in vitro-induced differentiation of MSCs into chondrocytes, osteocytes, and adipocytes potentially reflect specific roles for these genes during and following differentiation in the fully functional cells. Understanding these roles and the network of signaling molecules involved can open opportunities to improve the handling and utility of MSCs as cellular precursors for the treatment of cartilage and bone diseases.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Osteogênese , Placenta , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Feminino , Placenta/metabolismo , Placenta/citologia , Diferenciação Celular/genética , Condrogênese/genética , Gravidez , Osteogênese/genética , Biomarcadores/metabolismo , Senescência Celular/genética , Condrócitos/metabolismo , Condrócitos/citologia , Envelhecimento , Lamina Tipo A/metabolismo , Lamina Tipo A/genética
14.
Ann Thorac Med ; 19(2): 165-171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766371

RESUMO

BACKGROUND: Despite the decline of the COVID-19 pandemic, there continues to be a persistent requirement for reliable testing methods that can be adapted to future outbreaks and areas with limited resources. While the standard approach of using reverse transcription-polymerase chain reaction (RT-PCR) with Taq polymerase is effective, it faces challenges such as limited access to high-quality enzymes and the presence of bacterial DNA contamination in commercial kits, which can impact the accuracy of test results. METHODS: This study investigates the production of recombinant Taq polymerase in yeast cells and assesses its crude lysate in a multiplex RT-PCR assay for detecting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) and N genes, with human Ribonuclease P serving as an internal control. RESULTS: The unpurified yeast Taq polymerase demonstrates sensitivity comparable to commercially purified bacterial Taq polymerase and unpurified bacterial counterparts in detecting the RdRP and N genes. It exhibits the highest specificity, with 100% accuracy, for the N gene. The specificity for the RdRP gene closely aligns with that of commercially purified bacterial Taq polymerase and unpurified bacterial Taq polymerase. CONCLUSIONS: The use of unpurified recombinant yeast Taq polymerase shows promise as a cost-effective approach for conducting in-house COVID-19 RT-PCR testing. By eliminating the need for chromatography purification steps, the production of RT-PCR kits can be streamlined, potentially improving accessibility and scalability, especially in resource-limited settings and future pandemics.

15.
J Clin Med ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731097

RESUMO

Background: Recent research has identified alternative transcript variants of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) and insulin receptors (INSRs) as potential biomarkers for various types of cancer. The objective of this study was to assess the expression of LMNA/C and INSR transcript variants in peripheral blood mononuclear cells (PBMCs) of leukemia patients to investigate their potential as diagnostic biomarkers. Methods: Quantitative TaqMan reverse transcriptase polymerase chain reaction (RT-qPCR) was utilized to quantify the mRNA levels of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) as well as INSR (IR-A and IR-B) variants in PBMCs obtained from healthy individuals (n = 32) and patients diagnosed with primary leukemias (acute myeloid leukemia (AML): n = 17; acute lymphoblastic leukemia (ALL): n = 8; chronic myeloid leukemia (CML): n = 5; and chronic lymphocytic leukemia (CLL): n = 15). Results: Only LMNA and LMNC transcripts were notably present in PBMCs. Both exhibited significantly decreased expression levels in leukemia patients compared to the healthy control group. Particularly, the LMNC:LMNA ratio was notably higher in AML patients. Interestingly, IR-B expression was not detectable in any of the PBMC samples, precluding the calculation of the IR-A:IR-B ratio as a diagnostic marker. Despite reduced expression across all types of leukemia, IR-A levels remained detectable, indicating its potential involvement in disease progression. Conclusions: This study highlights the distinct expression patterns of LMNA/C and INSR transcript variants in PBMCs of leukemia patients. The LMNC:LMNA ratio shows promise as a potential diagnostic indicator for AML, while further research is necessary to understand the role of IR-A in leukemia pathogenesis and its potential as a therapeutic target.

16.
Front Biosci (Landmark Ed) ; 28(6): 113, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37395027

RESUMO

BACKGROUND: Lamins are the major component of nuclear lamina. Alternative splicing of the 12 exons comprising lamin A/C gene creates five known transcript variants, lamin A, lamin C, lamin AΔ10, lamin AΔ50, and lamin C2. The main objective for this study was to examine the association of critical pathways, networks, molecular and cellular functions regulated by each Lamin A/C transcript variants. METHODS: Ion AmpliSeq Transcriptome Human Gene Expression analysis was performed on MCF7 cells stably transfected with lamin A/C transcript variants. RESULTS: Lamin A or lamin AΔ50 upregulation was associated with activation of cell death and inactivation of carcinogenesis while both lamin C or lamin AΔ10 upregulation activated carcinogenesis and cell death. CONCLUSIONS: Data suggest anti-apoptotic and anti-senescence effects of lamin C and lamin AΔ10 as several functions, including apoptosis and necrosis functions are inactivated following lamin C or lamin AΔ10 upregulation. However, lamin AΔ10 upregulation is associated with a more carcinogenic and aggressive tumor phenotype. Lamin A or lamin AΔ50 upregulation is associated with a predicted activation of increased cell death and inactivation of carcinogenesis. Thus, different signaling pathways, networks, molecular and cellular functions are activated/inactivated by lamin A/C transcript variants resulting in a large number of laminopathies.


Assuntos
Lamina Tipo A , Transcriptoma , Humanos , Processamento Alternativo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Células MCF-7 , Transdução de Sinais/genética
17.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895816

RESUMO

Background: Obesity and type 2 diabetes mellitus (T2DM) are characterized by underlying low-grade chronic inflammation. Metformin has been used as the first line of therapy in T2DM as it decreases hepatic glucose production and glucose intestinal absorption, enhances insulin sensitivity and weight loss, and is known to ameliorate inflammation. The mechanisms through which metformin exerts its effect remain unclear. Proteomics has emerged as a unique approach to explore the biological changes associated with diseases, including T2DM. It provides insight into the circulating biomarkers/mediators which could be utilized for disease screening, diagnosis, and prognosis. Methods: This study evaluated the proteomic changes in obese (Ob), obese diabetics (OD), and obese diabetic patients on metformin (ODM) using a 2D DIGE MALDI-TOF mass spectrometric approach. Results: Significant changes in sixteen plasma proteins (15 up and 1 down, ANOVA, p ≤ 0.05; fold change ≥ 1.5) were observed in the ODM group when compared to the Ob and OD groups. Bioinformatic network pathway analysis revealed that the majority of these altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. Conclusions: Our study provides important information about the possible biomarkers altered by metformin treatment in obese patients with and without T2DM. These altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. The presented proteomic profiling approach may help in identifying potential biomarkers/mediators affected by metformin treatment in T2DM and inform the understanding of metformin's mechanisms of action.

18.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139843

RESUMO

Metformin is the first-line oral medication for treating type 2 diabetes mellitus (T2DM). In the current study, an untargeted lipidomic analytical approach was used to investigate the alterations in the serum lipidome of a cohort of 89 participants, including healthy lean controls and obese diabetic patients, and to examine the alterations associated with metformin administration. A total of 115 lipid molecules were significantly dysregulated (64 up-regulated and 51 down-regulated) in the obese compared to lean controls. However, the levels of 224 lipid molecules were significantly dysregulated (125 up-regulated and 99 down-regulated) in obese diabetic patients compared to the obese group. Metformin administration in obese diabetic patients was associated with significant dysregulation of 54 lipid molecule levels (20 up-regulated and 34 down-regulated). Levels of six molecules belonging to five lipid subclasses were simultaneously dysregulated by the effects of obesity, T2DM, and metformin. These include two putatively annotated triacylglycerols (TGs), one plasmenyl phosphatidylcholine (PC), one phosphatidylglycerol (PGs), one sterol lipid (ST), and one Mannosyl-phosphoinositol ceramide (MIPC). This study provides new insights into our understanding of the lipidomics alterations associated with obesity, T2DM, and metformin and offers a new platform for potential biomarkers for the progression of diabetes and treatment response in obese patients.

19.
Drug Metab Pers Ther ; 37(4): 353-359, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476275

RESUMO

OBJECTIVES: Despite its wide usage, warfarin therapy remains challenging due to its narrow therapeutic index, inter-individual response variability, and risk of bleeding. Previous reports have suggested that polymorphisms in VKORC1 and CYP2C9 genes could influence warfarin therapy. Herein, we investigated whether VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*3 gene polymorphisms are associated with warfarin dose adjustment and related bleeding events. METHODS: This cross-sectional study was conducted on Saudi adults receiving warfarin for more than 1 month. Their demographics and relevant clinical data were obtained. Genotyping for VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*2 genotypes was performed. RESULTS: Patients who are homozygous for the mutant T allele VKORC1 T/T required the lowest warfarin daily maintenance dose, compared to VKORC1 C/T and VKORC1 C/C. Similarly, there was a significant reduction in warfarin daily maintenance dose among CYP2C9*1/*3 and CYP2C9*1/*2 groups compared to CYP2C9*1/*1. However, we found no significant correlation between the studied polymorphisms and warfarin-associated bleeding. CONCLUSIONS: Similar to other populations, the VKORC1 and CYP2C9 gene polymorphisms are significantly associated with warfarin dosage in Saudi patients. The presence of at least one copy of the mutant alleles for VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*3 is associated with a significant reduction in warfarin maintenance dose.


Assuntos
Polimorfismo de Nucleotídeo Único , Varfarina , Humanos , Varfarina/efeitos adversos , Polimorfismo de Nucleotídeo Único/genética , Estudos Transversais , Citocromo P-450 CYP2C9/genética , Vitamina K Epóxido Redutases/genética
20.
Drug Metab Pers Ther ; 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365981

RESUMO

OBJECTIVES: Despite its wide usage, warfarin therapy remains challenging due to its narrow therapeutic index, inter-individual response variability, and risk of bleeding. Previous reports have suggested that polymorphisms in VKORC1 and CYP2C9 genes could influence warfarin therapy. Herein, we investigated whether VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*3 gene polymorphisms are associated with warfarin dose adjustment and related bleeding events. METHODS: This cross-sectional study was conducted on Saudi adults receiving warfarin for more than 1 month. Their demographics and relevant clinical data were obtained. Genotyping for VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*2 genotypes was performed. RESULTS: Patients who are homozygous for the mutant T allele VKORC1 T/T required the lowest warfarin daily maintenance dose, compared to VKORC1 C/T and VKORC1 C/C. Similarly, there was a significant reduction in warfarin daily maintenance dose among CYP2C9*1/*3 and CYP2C9*1/*2 groups compared to CYP2C9*1/*1. However, we found no significant correlation between the studied polymorphisms and warfarin-associated bleeding. CONCLUSIONS: Similar to other populations, the VKORC1 and CYP2C9 gene polymorphisms are significantly associated with warfarin dosage in Saudi patients. The presence of at least one copy of the mutant alleles for VKORC1 -1173C>T, CYP2C9*2, and CYP2C9*3 is associated with a significant reduction in warfarin maintenance dose.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa