Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 132, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167256

RESUMO

Copy number variants (CNV) are shown to contribute to the etiology of several genetic disorders. Accurate detection of CNVs on whole exome sequencing (WES) data has been a long sought-after goal for use in clinics. This was not possible despite recent improvements in performance because algorithms mostly suffer from low precision and even lower recall on expert-curated gold standard call sets. Here, we present a deep learning-based somatic and germline CNV caller for WES data, named ECOLE. Based on a variant of the transformer architecture, the model learns to call CNVs per exon, using high-confidence calls made on matched WGS samples. We further train and fine-tune the model with a small set of expert calls via transfer learning. We show that ECOLE achieves high performance on human expert labelled data for the first time with 68.7% precision and 49.6% recall. This corresponds to precision and recall improvements of 18.7% and 30.8% over the next best-performing methods, respectively. We also show that the same fine-tuning strategy using tumor samples enables ECOLE to detect RT-qPCR-validated variations in bladder cancer samples without the need for a control sample. ECOLE is available at https://github.com/ciceklab/ECOLE .


Assuntos
Variações do Número de Cópias de DNA , Exoma , Humanos , Sequenciamento do Exoma , Exoma/genética , Algoritmos , Éxons , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Comput Biol Med ; 169: 107810, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134749

RESUMO

Non-silent single nucleotide genetic variants, like nonsense changes and insertion-deletion variants, that affect protein function and length substantially are prevalent and are frequently misclassified. The low sensitivity and specificity of existing variant effect predictors for nonsense and indel variations restrict their use in clinical applications. We propose the Pathogenic Mutation Prediction (PMPred) method to predict the pathogenicity of single nucleotide variations, which impair protein function by prematurely terminating a protein's elongation during its synthesis. The prediction starts by monitoring functional effects (Gene Ontology annotation changes) of the change in sequence, using an existing ensemble machine learning model (UniGOPred). This, in turn, reveals the mutations that significantly deviate functionally from the wild-type sequence. We have identified novel harmful mutations in patient data and present them as motivating case studies. We also show that our method has increased sensitivity and specificity compared to state-of-the-art, especially in single nucleotide variations that produce large functional changes in the final protein. As further validation, we have done a comparative docking study on such a variation that is misclassified by existing methods and, using the altered binding affinities, show how PMPred can correctly predict the pathogenicity when other tools miss it. PMPred is freely accessible as a web service at https://pmpred.kansil.org/, and the related code is available at https://github.com/kansil/PMPred.


Assuntos
Exoma , Descoberta do Conhecimento , Humanos , Sequenciamento do Exoma , Mutação , Nucleotídeos , Biologia Computacional/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39159015

RESUMO

AirLift is the first read remapping tool that enables users to quickly and comprehensively map a read set, that had been previously mapped to one reference genome, to another similar reference. Users can then quickly run a downstream analysis of read sets for each latest reference release. Compared to the state-of-the-art method for remapping reads (i.e., full mapping), AirLift reduces the overall execution time to remap read sets between two reference genome versions by up to 27.4×. We validate our remapping results with GATK and find that AirLift provides high accuracy in identifying ground truth SNP/INDEL variants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa