Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 210(7): 916-925, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883856

RESUMO

The activation-induced marker (AIM) assay is a cytokine-independent technique to identify Ag-specific T cells based on the upregulated expression of activation markers after Ag restimulation. The method offers an alternative to intracellular cytokine staining in immunological studies, in which limited cytokine production makes the cell subsets of interest difficult to detect. Studies of lymphocytes in human and nonhuman primates have used the AIM assay to detect Ag-specific CD4+ and CD8+ T cells. However, there is a lack of validation of the strengths and limitations of the assay in murine (Mus musculus) models of infection and vaccination. In this study, we analyzed immune responses of TCR-transgenic CD4+ T cells, including lymphocytic choriomeningitis virus-specific SMARTA, OVA-specific OT-II, and diabetogenic BDC2.5-transgenic T cells, and measured the ability of the AIM assay to effectively identify these cells to upregulate AIM markers OX40 and CD25 following culture with cognate Ag. Our findings indicate that the AIM assay is effective for identifying the relative frequency of protein immunization-induced effector and memory CD4+ T cells, whereas the AIM assay had reduced ability to identify specific cells induced by viral infection, particularly during chronic lymphocytic choriomeningitis virus infection. Evaluation of polyclonal CD4+ T cell responses to acute viral infection demonstrated that the AIM assay can detect a proportion of both high- and low-affinity cells. Together, our findings indicate that the AIM assay can be an effective tool for relative quantification of murine Ag-specific CD4+ T cells to protein vaccination, while demonstrating its limitations during conditions of acute and chronic infection.


Assuntos
Antígenos , Linfócitos T CD4-Positivos , Camundongos , Humanos , Animais , Vírus da Coriomeningite Linfocítica , Linfócitos T CD8-Positivos , Citocinas , Camundongos Endogâmicos C57BL
2.
Immunity ; 43(4): 703-14, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26431949

RESUMO

Epigenetic changes, including histone methylation, control T cell differentiation and memory formation, though the enzymes that mediate these processes are not clear. We show that UTX, a histone H3 lysine 27 (H3K27) demethylase, supports T follicular helper (Tfh) cell responses that are essential for B cell antibody generation and the resolution of chronic viral infections. Mice with a T cell-specific UTX deletion had fewer Tfh cells, reduced germinal center responses, lacked virus-specific immunoglobulin G (IgG), and were unable to resolve chronic lymphocytic choriomeningitis virus infections. UTX-deficient T cells showed decreased expression of interleukin-6 receptor-α and other Tfh cell-related genes that were associated with increased H3K27 methylation. Additionally, Turner Syndrome subjects, who are predisposed to chronic ear infections, had reduced UTX expression in immune cells and decreased circulating CD4(+) CXCR5(+) T cell frequency. Thus, we identify a critical link between UTX in T cells and immunity to infection.


Assuntos
Histona Desmetilases/deficiência , Histona Desmetilases/fisiologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas Nucleares/deficiência , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Viremia/imunologia , Animais , Anticorpos Antivirais/biossíntese , Diferenciação Celular , Feminino , Dosagem de Genes , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença , Histonas/metabolismo , Humanos , Memória Imunológica , Subunidade alfa de Receptor de Interleucina-6/biossíntese , Subunidade alfa de Receptor de Interleucina-6/genética , Cooperação Linfocítica , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Metilação , Camundongos , Modelos Imunológicos , Otite Média/etiologia , Processamento de Proteína Pós-Traducional , Receptores CXCR5/análise , Especificidade da Espécie , Subpopulações de Linfócitos T/enzimologia , Subpopulações de Linfócitos T/virologia , Linfócitos T Auxiliares-Indutores/enzimologia , Linfócitos T Auxiliares-Indutores/virologia , Transcrição Gênica , Síndrome de Turner/complicações , Síndrome de Turner/enzimologia , Virulência , Inativação do Cromossomo X
3.
Eur J Immunol ; 52(7): 1158-1170, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389516

RESUMO

The contribution of low-affinity T cells to autoimmunity in the context of polyclonal T-cell responses is understudied due to the limitations in their capture by tetrameric reagents and low level of activation in response to antigenic stimulation. As a result, low-affinity T cells are often disregarded as nonantigen-specific cells irrelevant to the immune response. Our study aimed to assess how the level of self-antigen reactivity shapes T-cell lineage and effector responses in the context of spontaneous tissue-specific autoimmunity observed in NOD mice. Using multicolor flow cytometry in combination with Nur77GFP reporter of TCR signaling, we identified a dormant population of T cells that infiltrated the pancreatic islets of prediabetic NOD mice, which exhibited reduced levels of self-tissue reactivity based on expression of CD5 and Nur77GFP . We showed that these CD5low T cells had a unique TCR repertoire and exhibited low activation and minimal effector function; however, induced rapid diabetes upon transfer. The CD4+ CD5low T-cell population displayed transcriptional signature of central memory T cells, consistent with the ability to acquire effector function post-transfer. Transcriptional profile of CD5low T cells was similar to T cells expressing a low-affinity TCR, indicating TCR affinity to be an important factor in shaping CD5low T-cell phenotype and function at the tissue site. Overall, our study suggests that autoimmune tissue can maintain a reservoir of undifferentiated central memory-like autoreactive T cells with pathogenic effector potential that might be an important source for effector T cells during long-term chronic autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Linfócitos T CD4-Positivos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética
4.
J Immunol ; 200(5): 1580-1592, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367208

RESUMO

Chronic inflammatory demyelinating polyneuropathy (CIDP) is a debilitating condition caused by autoimmune demyelination of peripheral nerves. CIDP is associated with increased IL-10, a cytokine with well-described anti-inflammatory effects. However, the role of IL-10 in CIDP is unclear. In this study, we demonstrate that IL-10 paradoxically exacerbates autoimmunity against peripheral nerves. In IL-10-deficient mice, protection from neuropathy was associated with an accrual of highly activated CD4+ T cells in draining lymph nodes and absence of infiltrating immune cells in peripheral nerves. Accumulated CD4+ T cells in draining lymph nodes of IL-10-deficient mice expressed lower sphingosine-1-phosphate receptor 1 (S1pr1), a protein important in lymphocyte egress. Additionally, IL-10 stimulation in vitro induced S1pr1 expression in lymph node cells in a STAT3-dependent manner. Together, these results delineate a novel mechanism in which IL-10-induced STAT3 increases S1pr1 expression and CD4+ T cell migration to accelerate T cell-mediated destruction of peripheral nerves.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Movimento Celular/imunologia , Interleucina-10/imunologia , Neurite Autoimune Experimental/imunologia , Receptores de Lisoesfingolipídeo/imunologia , Animais , Doenças Desmielinizantes/imunologia , Feminino , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Fator de Transcrição STAT3/imunologia , Receptores de Esfingosina-1-Fosfato
5.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36711832

RESUMO

Foxp3+ regulatory T cells (Tregs) are capable suppressors of aberrant self-reactivity. However, TCR affinity and specificities that support Treg function, and how these compare to autoimmune T cells remain unresolved. In this study, we used antigen agnostic and epitope-focused analyses to compare TCR repertoires of regulatory and effector T cells that spontaneously infiltrate pancreatic islets of non-obese diabetic mice. We show that effector and regulatory T cell-derived TCRs possess similar wide-ranging reactivity for self-antigen. Treg-derived TCRs varied in their capacity to confer optimal protective function, and Treg suppressive capacity was in part determined by effector TCR affinity. Interestingly, when expressing the same TCR, Tregs showed higher Nur77-GFP expression than Teffs, suggesting Treg-intrinsic ability to compete for antigen. Our findings provide a new insight into TCR-dependent and independent mechanisms that regulate Treg function and indicate a TCR-intrinsic insufficiency in tissue-specific Tregs that may contribute to the pathogenesis of type 1 diabetes.

6.
Front Immunol ; 13: 911151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032083

RESUMO

The importance of regulatory T cells (Tregs) in preventing autoimmunity has been well established; however, the precise alterations in Treg function in autoimmune individuals and how underlying genetic associations impact the development and function of Tregs is still not well understood. Polygenetic susceptibly is a key driving factor in the development of autoimmunity, and many of the pathways implicated in genetic association studies point to a potential alteration or defect in regulatory T cell function. In this review transcriptomic control of Treg development and function is highlighted with a focus on how these pathways are altered during autoimmunity. In combination, observations from autoimmune mouse models and human patients now provide insights into epigenetic control of Treg function and stability. How tissue microenvironment influences Treg function, lineage stability, and functional plasticity is also explored. In conclusion, the current efficacy and future direction of Treg-based therapies for Type 1 Diabetes and other autoimmune diseases is discussed. In total, this review examines Treg function with focuses on genetic, epigenetic, and environmental mechanisms and how Treg functions are altered within the context of autoimmunity.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Animais , Doenças Autoimunes/imunologia , Diabetes Mellitus Tipo 1/imunologia , Fatores de Transcrição Forkhead/genética , Humanos , Camundongos , Linfócitos T Reguladores/imunologia
7.
J Clin Invest ; 128(10): 4727-4741, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222134

RESUMO

Chronic inflammatory demyelinating polyneuropathy (CIDP) and Guillain-Barre syndrome (GBS) are inflammatory neuropathies that affect humans and are characterized by peripheral nerve myelin destruction and macrophage-containing immune infiltrates. In contrast to the traditional view that the peripheral nerve is simply the target of autoimmunity, we report here that peripheral nerve Schwann cells exacerbate the autoimmune process through extracellular matrix (ECM) protein induction. In a spontaneous autoimmune peripheral polyneuropathy (SAPP) mouse model of inflammatory neuropathy and CIDP nerve biopsies, the ECM protein periostin (POSTN) was upregulated in affected sciatic nerves and was primarily expressed by Schwann cells. Postn deficiency delayed the onset and reduced the extent of neuropathy, as well as decreased the number of macrophages infiltrating the sciatic nerve. In an in vitro assay, POSTN promoted macrophage chemotaxis in an integrin-AM (ITGAM) and ITGAV-dependent manner. The PNS-infiltrating macrophages in SAPP-affected nerves were pathogenic, since depletion of macrophages protected against the development of neuropathy. Our findings show that Schwann cells promote macrophage infiltration by upregulating Postn and suggest that POSTN is a novel target for the treatment of macrophage-associated inflammatory neuropathies.


Assuntos
Moléculas de Adesão Celular/imunologia , Macrófagos/imunologia , Células de Schwann/imunologia , Animais , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Moléculas de Adesão Celular/genética , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/genética , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/patologia , Células de Schwann/patologia
8.
Dis Model Mech ; 7(8): 1005-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24906373

RESUMO

Autosomal-dominant hereditary spastic paraplegia (AD-HSP) is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss-of-function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motor neuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18°C), compared with the standard temperature of 24°C, improves the survival and mobility of adult spastin mutants but leaves wild-type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered and, notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in flies with mutations in Flower (a protein with no known relation to Spastin) and mobility defects in flies lacking Kat60-L1, another microtubule-severing protein enriched in the CNS. Together, these data support the hypothesis that the beneficial effects of cold extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, might thus hold additional promise as a therapeutic approach for AD-HSP and, potentially, for other neurodegenerative diseases.


Assuntos
Drosophila melanogaster/fisiologia , Movimento , Paraplegia Espástica Hereditária/fisiopatologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Animais Geneticamente Modificados , Canais de Cálcio/genética , Temperatura Baixa , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genótipo , Katanina , Larva/fisiologia , Longevidade , Atividade Motora , Mutação/genética , Pupa/fisiologia , Análise de Sobrevida , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa