Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 61, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806731

RESUMO

Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Bacteriano , Salmonella enterica , Brasil , Salmonella enterica/genética , Salmonella enterica/classificação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Bacteriano/genética , Humanos , Filogenia , Tipagem de Sequências Multilocus , Animais , Sistemas CRISPR-Cas/genética , Sorogrupo
2.
Antonie Van Leeuwenhoek ; 117(1): 86, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829455

RESUMO

Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.


Assuntos
Genoma Bacteriano , Filogenia , Fatores de Virulência , Yersinia , Yersinia/genética , Yersinia/classificação , Yersinia/patogenicidade , Yersinia/isolamento & purificação , Fatores de Virulência/genética , Brasil , Yersiniose/microbiologia , Yersiniose/veterinária , Humanos , Genômica , Prófagos/genética , Plasmídeos/genética , Tipagem de Sequências Multilocus , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa