Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1052: 190-201, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30685038

RESUMO

This paper focuses on several methodological aspects in the quantitation of volatiles in solid samples by headspace solid phase micro-extraction (HS-SPME) combined with gas chromatography and parallel detection by flame ionization detector and mass spectrometry (GC-FID/MS). Informative volatiles, including key odorants and process markers, from single-origin cocoa samples (Colombia, Ecuador, Mexico, Sao Tomè, and Venezuela) were captured at two processing stages along the chocolate production chain (nibs and cocoa mass). Accurate quantitation was achieved by multiple headspace extraction (MHE) in headspace linearity conditions and by external calibration. Quantitative results on selected analytes (3-hydroxy-2-butanone, 2-heptanol, 2,3,5-trimethylpyrazine, 2-ethyl-3,6-dimethylpyrazine, ethyl octanoate, benzaldehyde, 2-methylpropionic acid, 3-methylbutyric acid, ethyl phenylacetate, 2-phenylethyl acetate, guaiacol, 2-phenylethanol, and (E)-2-phenyl-2-butenal) provided reliable information about the key sensory notes of cocoa intermediates (odor activity values) and their origin specificities. Additional information about analytes release by the solid environment (cocoa nibs, mass, and powders) was achieved by modeling decay curves. Parallel detection by MS and FID enabled quantitative cross-validation, and FID-predicted relative response factors (RRFs) extended method quantitation capabilities to additional compounds that were not subjected to an external calibration procedure: 3-methylbutyl acetate (isoamyl acetate), 2-heptanone, heptanal, 2-nonanone, γ-butyrolactone, octanoic acid, 2-ethyl-5(6)-methylpyrazine, phenylacetic acid, phenol, 2-acetyl pyrrole, and 2,3-dihydro-3,5-dihydroxy-6-methyl(4H)-pyran-4-one. This procedure extends method capabilities and information potential with great consistency.


Assuntos
Chocolate/análise , Odorantes/análise , Microextração em Fase Sólida/métodos , Ionização de Chama , Volatilização
2.
J Agric Food Chem ; 65(30): 6329-6341, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28682071

RESUMO

This study investigates chemical information of volatile fractions of high-quality cocoa (Theobroma cacao L. Malvaceae) from different origins (Mexico, Ecuador, Venezuela, Columbia, Java, Trinidad, and Sao Tomè) produced for fine chocolate. This study explores the evolution of the entire pattern of volatiles in relation to cocoa processing (raw, roasted, steamed, and ground beans). Advanced chemical fingerprinting (e.g., combined untargeted and targeted fingerprinting) with comprehensive two-dimensional gas chromatography coupled with mass spectrometry allows advanced pattern recognition for classification, discrimination, and sensory-quality characterization. The entire data set is analyzed for 595 reliable two-dimensional peak regions, including 130 known analytes and 13 potent odorants. Multivariate analysis with unsupervised exploration (principal component analysis) and simple supervised discrimination methods (Fisher ratios and linear regression trees) reveal informative patterns of similarities and differences and identify characteristic compounds related to sample origin and manufacturing step.


Assuntos
Cacau/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sementes/química , Compostos Orgânicos Voláteis/química , Cacau/classificação , Culinária , Análise Discriminante , Manipulação de Alimentos , Controle de Qualidade , Sementes/classificação , América do Sul
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa