Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(44): 15440-15447, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301910

RESUMO

A growing demand for low-cost gas sensors capable of detecting the smallest amounts of highly toxic substances in air, including chemical warfare agents (CWAs) and toxic industrial chemicals (TICs), has emerged in recent years. Ion mobility spectrometers (IMS) are particularly suitable for this application due to their high sensitivity and fast response times. In view of the preferred mobile use of such devices, miniaturized ion drift tubes are required as the core of IMS-based lightweight, low-cost, hand-held gas detectors. Thus, we evaluate the suitability of a miniaturized ion mobility spectrometer featuring an ion drift tube length of just 40 mm and a high resolving power of Rp = 60 for the detection of various CWAs, such as nerve agents sarin (GB), tabun (GA), soman (GD), and cyclosarin (GF), as well as the blister agent sulfur mustard (HD), the blood agent hydrogen cyanide (AC) and the choking agent chlorine (CL). We report on the limits of detection reaching minimum concentration levels of, for instance, 29 pptv for sarin (GB) within an averaging time of only 1 s. Furthermore, we investigate the effects of precursors, simulants, and other common interfering substances on false positive alarms.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Agentes Neurotóxicos , Soman , Substâncias para a Guerra Química/análise , Sarina/química , Gás de Mostarda/análise , Soman/química
2.
Anal Chem ; 94(2): 1211-1220, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34963287

RESUMO

Due to their high sensitivity and compact design, ion mobility spectrometers are widely used to detect toxic industrial chemicals (TICs) in air. However, when analyzing complex gas mixtures, classical ion mobility spectrometry (IMS) suffers from false-positive rates due to limited resolving power or false-negative rates caused by competitive ion-molecule reactions and the resulting suppression of certain analyte ions. To overcome these limitations, high-kinetic energy IMS (HiKE-IMS) was introduced some years ago. In contrast to classical IMS, HiKE-IMS is operated at decreased pressures of 20···60 mbar and high reduced electric field strengths E/N of up to 120 Td. Under these conditions, the influence of competitive ion-molecule reactions on the prevailing ion population should be less pronounced, thus reducing false negatives. Additionally, effects such as fragmentation and field-dependent ion mobility may help to reduce false positives. In this work, the capabilities and limitations of HiKE-IMS in the field of on-site detection of the volatile TICs NH3, HCN, H2S, HCl, NO2, Cl2, and SO2 are evaluated for the first time. Based on the limits of detection and the extent of spectral and chemical cross-sensitivities in gas mixtures, the results obtained for HiKE-IMS are compared with those obtained for classical IMS. It is shown that HiKE-IMS is less sensitive in comparison to classical IMS. However, when used for TIC detection, the reduced sensitivity of HiKE-IMS is not a major drawback. With values around 1 ppmv, the achievable limits of detection for almost all TICs are below the AEGL-2 (4h) levels. Furthermore, in comparison to classical IMS, it is still striking that HiKE-IMS shows significantly less spectral and chemical cross-sensitivities and thus exhibits considerably lower false-positive and false-negative rates. Overall, it thus turns out that HiKE-IMS is a promising alternative to classical IMS in the field of on-site detection of TICs.


Assuntos
Gases , Espectrometria de Mobilidade Iônica , Íons
3.
Anal Bioanal Chem ; 411(24): 6229-6246, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30957205

RESUMO

With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.

5.
Anal Chem ; 86(23): 11841-6, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25360539

RESUMO

One major drawback of ion mobility spectrometry (IMS) is the dependence of the response to a certain analyte on the concentration of water or the presence of other compounds in the sample gas. Especially for low proton affine analytes, e.g., benzene, which often exists in mixtures with other volatile organic compounds, such as toluene and xylene (BTX), a time-consuming preseparation is necessary. In this work, we investigate BTX mixtures using a compact IMS operated at decreased pressure (20 mbar) and high kinetic ion energies (HiKE-IMS). The reduced electric field in both the reaction tube and the drift tube can be independently increased up to 120 Td. Under these conditions, the water cluster distribution of reactant ions is shifted toward smaller clusters independent of the water content in the sample gas. Thus, benzene can be ionized via proton transfer from H3O(+) reactant ions. Also, a formation of benzene ions via charge transfer from NO(+) is possible. Furthermore, the time for interaction between ions and neutrals of different analytes is limited to such an extent that a simultaneous quantification of benzene, toluene, and xylene is possible from low ppbv up to several ppmv concentrations. The mobility resolution of the presented HiKE-IMS varies from R = 65 at high field (90 Td) to R = 73 at lower field (40 Td) in the drift tube, which is sufficient to separate the analyzed compounds. The detection limit for benzene is 29 ppbv (2 s of averaging) with 3700 ppmv water, 12.4 ppmv toluene, and 9 ppmv xylene present in the sample gas. Furthermore, a less-moisture-dependent benzene measurement with a detection limit of 32 ppbv with ca. 21 000 ppmv (90% relative humidity (RH) at 20 °C) water present in the sample gas is possible evaluating the signal from benzene ions formed via charge transfer.


Assuntos
Atmosfera/química , Benzeno/análise , Tolueno/química , Xilenos/química , Cinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Anal Chem ; 86(14): 7023-32, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24937741

RESUMO

We present a high kinetic energy ion mobility spectrometer (HiKE-IMS) for quantitative gas analysis. Drift tube and reaction tube can be operated at reduced fields up to 110 Td. At such conditions the distribution of reactant ion water clusters is shifted toward smaller clusters. Due to the resulting presence of bare reactant ions (e.g., H3O(+)) and the kinetic control of the ionization process with decreasing reaction time, unlike conventional IMS, a quantitative detection with ppbv detection limits of low proton affine analytes even in humid gas mixtures containing high proton affine compounds is possible using a direct sample gas inlet. A significantly improved dynamic range compared to conventional IMS is achieved. An incremental change in reduced fields enables the observation of parameters like field dependent ion mobilites or analyte fragmentation. Also, the characteristic of the analyte signal with respect to the reduced reaction field gives insight into the ionization process of the analyte. Thus, HiKE-IMS enables substance identification by ion mobility and additional analytical information that are not observed with conventional IMS. The instrumental effort is similar to conventional desktop IMS with overall dimensions of the drift and reaction tube of 4 cm × 4 cm × 28.5 cm. However, the mobility resolution is limited and between 30 and 40. Because of the moisture independent ionization and the decrease in competing ion-molecule reactions, no preseparation or membrane inlet is necessary when the compounds of interest are distinguishable either by a significant difference in ion mobility or the additional analytical information.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39013159

RESUMO

High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) ionize and separate ions at reduced pressures of 10-40 mbar and over a wide range of reduced electric field strengths E/N of up to 120 Td. Their reduced operating pressure is distinct from that of conventional drift tube ion mobility spectrometers that operate at ambient pressure for trace compound detection. High E/N can lead to a field-induced fragmentation pattern that provides more specific structural information about the analytes. In addition, operation at high E/N values adds the field dependence of ion mobility as an additional separation dimension to low-field ion mobility, making interfering compounds less likely to cause a false positive alarm. In this work, we study the chemical warfare agents tabun (GA), sarin (GB), soman (GD), cyclosarin (GF) and sulfur mustard (HD) in a HiKE-IMS at variable E/N in both the reaction and the drift region. The results show that varying E/N can lead to specific fragmentation patterns at high E/N values combined with molecular signals at low E/N. Compared to the operation at a single E/N value in the drift region, the variation of E/N in the drift region also provides the analyte-specific field dependence of ion mobility as additional information. The accumulated data establish a unique fingerprint for each analyte that allows for reliable detection of chemical warfare agents even in the presence of interfering compounds with similar low-field ion mobilities, thus reducing false positives.

8.
Analyst ; 138(18): 5200-7, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23678483

RESUMO

Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

9.
J Am Soc Mass Spectrom ; 32(7): 1810-1820, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170133

RESUMO

Classical ion mobility spectrometers (IMS) operated at ambient pressure, often use atmospheric pressure chemical ionization (APCI) sources to ionize organic compounds. In APCI, reactant ions ionize neutral analyte molecules via gas-phase ion-molecule reactions. The positively charged reactant ions in purified, dry air are H3O+, NO+, and O2+•. However, the hydration of reactant ions in classical IMS operated at ambient pressure renders ionization of certain analytes difficult. In contrast to classical IMS operated at ambient pressure, High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) are operated at a decreased pressure of 10-40 mbar, allowing operation at high reduced electric field strengths of up to 120 Td. At such high reduced field strengths, ions reach high effective temperatures causing collision-induced cluster dissociation of the hydrated gas-phase ions, allowing ionization of nonpolar and low proton affinity analytes. The reactant ion population, consisting of H3O+(H2O)n, NO+(H2O)m, and O2+•(H2O)p with an individual abundance that strongly depends on the reduced field strength, differs from the reactant ion population in IMS operated at ambient pressure, which affects the ionization of analyte molecules. In this work, we investigate the influence of reduced field strength on the product ion formation of aromatic hydrocarbons used as model substances. A HiKE-IMS-MS coupling was used to identify the detected ion species. The results show that the analytes form parent cations via charge transfer with NO+(H2O)m and O2+•(H2O)p depending on ionization energy and protonated parent molecules via proton transfer and ligand switching with H3O+(H2O)n mainly depending on proton affinity.

10.
J Am Soc Mass Spectrom ; 32(9): 2436-2450, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342982

RESUMO

Ions are separated in ion mobility spectrometry (IMS) by their characteristic motion through a gas-filled drift tube with a static electric field present. Chemical dynamics, such as clustering and declustering of chemically reactive systems, and physical parameters, as, for example, the electric field strength or background gas temperature, impact on the observed ion mobility. In high kinetic energy IMS (HiKE-IMS), the reduced electric field strength is up to 120 Td in both the reaction region and drift region of the instrument. The ion generation in a corona discharge driven chemical ionization source leads generally to formation of proton-bound water clusters. However, the reduced electric field strength and therefore the effective ion temperature has a significant influence on the chemical equilibria of this reaction system. In order to characterize the effects occurring in IMS systems in general, numerical simulations can support and potentially explain experimental observations. The comparison of the simulation of a well characterized chemical reaction system (i.e., the proton-bound water cluster system) with experimental results allows us to validate the numerical model applied in this work. Numerical simulations of the proton-bound water cluster system were performed with the custom particle-based ion dynamics simulation framework (IDSimF). The ion-transport calculation in the model is based on a Verlet integration of the equations of motion and uses a customized Barnes-Hut method to calculate space charge interactions. The chemical kinetics is modeled stochastically with a Monte Carlo method. The experimental and simulated drift spectra are in good qualitative and quantitative agreement, and experimentally observed individual transitions of cluster ions are clearly reproduced and identified by the numerical model.

11.
J Am Soc Mass Spectrom ; 31(10): 2093-2101, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32875796

RESUMO

Ion mobility spectrometers (IMS) separate ions mainly by ion-neutral collision cross section and to a lesser extent by ion mass and effective temperature. When investigating isotopologues, the difference in collision cross section can be assumed negligible. Since the mobility shift of isotopologues is thus mainly caused by their difference in mass and effective temperature, the investigation of isotopologues can provide important insights into the theory of ion mobility. However, in classical IMS operated at ambient pressure, cluster formation with neutral molecules occurs, which significantly influences the mobility shift of isotopologues and thus makes a sound investigation of the effect of ion mass and effective temperature on the ion mobility difficult. In this work, the relative ion mobility of several organic compounds and their 13C-labeled isotopologues is studied in a High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) at high reduced electric fields up to 120 Td, which allows the investigation of nonclustered ion species and thus enables a sound investigation of the mobility shift of isotopologues. The results show that the measured relative ion mobilities of isotopologues having the same effective temperature and, thus, their ion mass dominating the relative ion mobility agree well with theoretical relative ion mobilities predicted by the theory of ion mobility.

12.
J Am Soc Mass Spectrom ; 31(7): 1536-1543, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432872

RESUMO

High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) are usually operated at an absolute pressure of 20 mbar reaching high reduced electric field strengths of up to 125 Td for controlled reaction kinetics. This significantly increases the linear range and limits chemical cross sensitivities. Furthermore, HiKE-IMS enables the ionization of compounds normally not detectable in ambient pressure IMS, such as benzene, due to new reaction pathways and the inhibition of clustering reactions. In addition, HiKE-IMS allows the observation of additional orthogonal parameters related to an increased ion temperature such as fragmentation and field-dependent ion mobility, which may help to separate compounds that have similar ion mobility under low field conditions. Aiming for a hand-held HiKE-IMS to carry its benefits into field applications, reducing size and power consumption of the vacuum system is necessary. In this work, we present a novel HiKE-IMS design entirely manufactured from standard printed circuit boards (PCB) and experimentally investigate the analytical performance in dependence of the operating pressure between 20 mbar and 40 mbar. Hereby, the limit of detection (LoD) for benzene in purified, dry air (1.4 ppmV water) improved from 7 ppbV at 20 mbar down to 1.8 ppbV at 40 mbar. Furthermore, adding 0.9 ppmV toluene, the signal of the benzene B+ peak decreased by only 2% at 40 mbar. Even in the presence of high relative humidity in the sample gas above 90% or toluene concentrations of up to 20 ppmV, the LoD for benzene just increased to 9 ppbV at 40 mbar.

13.
J Am Soc Mass Spectrom ; 31(9): 1861-1874, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32672039

RESUMO

Due to the operation at background pressures between 10-40 mbar and high reduced electric field strengths of up to 120 Td, the ion-molecule reactions in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) differ from those in classical ambient pressure IMS. In the positive ion polarity mode, the reactant ions H+(H2O)n, O2+(H2O)n, and NO+(H2O)n are observed in the HiKE-IMS. The relative abundances of these reactant ion species significantly depend on the reduced electric field strength in the reaction region, the operating pressure, and the water concentration in the reaction region. In this work, the formation of negative reactant ions in HiKE-IMS is investigated in detail. On the basis of kinetic and thermodynamic data from the literature, the processes resulting in the formation of negative reactant ions are kinetically modeled. To verify the model, we present measurements of the negative reactant ion population in the HiKE-IMS and its dependence on the reduced electric field strength as well as the water and carbon dioxide concentrations in the reaction region. The ion species underlying individual peaks in the ion mobility spectrum are identified by coupling the HiKE-IMS to a time-of-flight mass spectrometer (TOF-MS) using a simple gated interface that enables the transfer of selected peaks of the ion mobility spectrum into the TOF-MS. Both the theoretical model as well as the experimental data suggest the predominant generation of the oxygen-based ions O-, OH-, O2-, and O3- in purified air containing 70 ppmv of water and 30 ppmv of carbon dioxide. Additionally, small amounts of NO2- and CO3- are observed. Their relative abundances highly depend on the reduced electric field strength as well as the water and carbon dioxide concentration. An increase of the water concentration in the reaction region results in the generation of OH- ions, whereas increasing the carbon dioxide concentration favors the generation of CO3- ions, as expected.

14.
J Am Soc Mass Spectrom ; 31(10): 2191-2201, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32865400

RESUMO

In High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS), ions are formed in a reaction region and separated in a drift region, which is similar to classical drift tube ion mobility spectrometers (IMS) operated at ambient pressure. However, in contrast to the latter, the HiKE-IMS is operated at a decreased background pressure of 10-40 mbar and achieves high reduced electric field strengths of up to 120 Td in both the reaction and the drift region. Thus, the HiKE-IMS allows insights into the chemical kinetics of ion-bound water cluster systems at effective ion temperatures exceeding 1000 K, although it is operated at the low absolute temperature of 45 °C. In this work, a HiKE-IMS with a high resolving power of RP = 140 is used to study the dependence of reduced ion mobilities on the drift gas humidity and the effective ion temperature for the positive reactant ions H3O+(H2O)n, O2+(H2O)n, NO+(H2O)n, NO2+(H2O)n, and NH4+(H2O)n, as well as the negative reactant ions O2-(H2O)n, O3-(H2O)n, CO3-(H2O)n, HCO3-(H2O)n, and NO2-(H2O)n. By varying the reduced electric field strength in the drift region, cluster transitions are observed in the ion mobility spectra. This is demonstrated for the cluster systems H3O+(H2O)n and NO+(H2O)n.

15.
J Am Soc Mass Spectrom ; 31(4): 812-821, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233385

RESUMO

In contrast to classical ion mobility spectrometers (IMS) operating at ambient pressure, the high kinetic energy ion mobility spectrometer (HiKE-IMS) is operated at reduced pressures between 10-40 mbar. In HiKE-IMS, ions are generated in a reaction region before they are separated in a drift region. Due to the operation at reduced pressure, it is possible to reach high reduced electric field strengths up to 120 Td in both the reaction as well as drift region, resulting in a pronounced decrease in chemical cross sensitivities and a significant enhancement of the dynamic range. Until now though, only limited knowledge about the ionization pathways in HiKE-IMS is available. Typically, proton bound water clusters, H+(H2O)n, are the most abundant positive reactant ion species in classical IMS with atmospheric chemical ionization sources. However, at reduced pressure and increased effective ion temperature, the reactant ion population significantly changes. As the ionization efficiency of analyte molecules in HiKE-IMS strongly depends on the reactant ion population, a detailed knowledge of the reactant ion population generated in HiKE-IMS is essential. Here, we present a coupling stage of the HiKE-IMS to a mass spectrometer enabling the identification of ion species and the investigation of ion molecule reactions prevailing in HiKE-IMS. In the present study, the HiKE-IMS-MS is used to identify positive reactant ion populations in both, purified air and nitrogen, respectively. The experimental data suggest the generation of systems of clustered primary ions (H+(H2O)n, NO+(H2O)m, and O2+(H2O)p), which most probably serve as reactant ions. Their relative abundances highly depend on the reduced electric field strength in the reaction region. Furthermore, their effective mobilities are studied as a function of the reduced electric field strength in the drift region.

16.
J Am Soc Mass Spectrom ; 31(6): 1291-1301, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32372646

RESUMO

In contrast to classical Ion Mobility Spectrometers (IMS) operating at ambient pressure, the High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) is operated at reduced pressures of between 10 and 40 mbar and higher reduced electric field strengths of up to 120 Td. Thus, the ion-molecule reactions occurring in the HiKE-IMS can significantly differ from those in classical ambient pressure IMS. In order to predict the ionization pathways of specific analyte molecules, profound knowledge of the reactant ion species generated in HiKE-IMS and their dependence on the ionization conditions is essential. In this work, the formation of positive reactant ions in HiKE-IMS is investigated in detail. On the basis of kinetic and thermodynamic data from the literature, the ion-molecule reactions are kinetically modeled. To verify the model, we present measurements of the reactant ion population and its dependence on the reduced electric field strength, the operating pressure, and the water concentration in the sample gas. All of these parameters significantly affect the reactant ion population formed in HiKE-IMS.

17.
J Am Soc Mass Spectrom ; 30(9): 1813-1823, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31140080

RESUMO

Ion funnels are one of the key components for transferring ions from higher pressure into the vacuum. Typically, ion funnels are constructed of several different plate ring electrodes with a decreasing inner diameter where radio frequency (RF) voltages and electric DC fields are applied to the electrodes to focus and transport ion clouds. In this work, we developed and investigated a simple and low-cost ion funnel design that is based on standard printed circuit boards (PCB) with integrated planar electrodes including the signal distribution network. This ion funnel is capable of withstanding high electric fields with superimposed RF voltages due to its buried capacitors. To evaluate the ion focusing efficiency of the ion funnel, we simulated the movement of ions inside this funnel and experimentally evaluated the ion transfer. Our simulations show that a rectangular ion funnel like the PCB ion funnel has similar performance compared with conventional stacked ring funnels. Due to the hundredfold lower parasitic capacitance between the planar electrodes compared with conventional ion funnels, high RF voltage amplitudes up to 195 V and reduced electric DC field strengths up to 100 Td can be reached at a frequency of about 5 MHz. Thus, the funnel is appropriate to focus light ions at elevated pressures up to 20 mbar. Graphical Abstract .

18.
J Am Soc Mass Spectrom ; 29(11): 2208-2217, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30105740

RESUMO

Ion mobility spectrometry provides information about molecular structures of ions. Hence, high resolving power allows separation of isomers which is of major interest in several applications. In this work, we couple our high-resolution ion mobility spectrometer (IMS) with a resolving power of Rp = 100 to a time-of-flight mass spectrometer (TOF-MS). Besides, the benefit of an increased resolving power such an IMS-MS also helps analyzing and understanding the ionization processes in IMS. Usually, the coupling between IMS and TOF-MS is realized by synchronizing data acquisition of the IMS and MS resulting in two-dimensional data containing ion mobility and mass spectra. However, due to peak widths of less than 100 µs in our high-resolution IMS, this technique is not practicable due to significant peak broadening during the ion transfer into the MS and an insufficient data acquisition rate of the MS. Thus, a novel but simple interface between the IMS and MS has been designed which minimizes ion losses, allows recording of ion mobility at full IMS resolving power, and enables a shuttered transmission of ions into the MS. The interface is realized by replacing the Faraday plate used in IMS by a Faraday grid that is shielded by two additional aperture grids. For demonstration, positive product ions of benzene, toluene, and m-xylene in air are investigated. The IMS is equipped with a radioactive 3H source. Besides the well-known product ions M+ and M·NO+, a dimer ion is also observed for benzene and toluene, consisting of two molecules and three further hydrogen atoms. Graphical Abstract ᅟ.

19.
Artigo em Inglês | MEDLINE | ID: mdl-29396365

RESUMO

Human smuggling and associated cross-border crimes have evolved as a major challenge for the European Union in recent years. Of particular concern is the increasing trend of smuggling migrants hidden inside shipping containers or trucks. Therefore, there is a growing demand for portable security devices for the non-intrusive and rapid monitoring of containers to detect people hiding inside. In this context, chemical analysis of volatiles organic compounds (VOCs) emitted from the human body is proposed as a locating tool. In the present study, an in-house made ion mobility spectrometer coupled with gas chromatography (GC-IMS) was used to monitor the volatile moieties released from the human body under conditions that mimic entrapment. A total of 17 omnipresent volatile compounds were identified and quantified from 35 ion mobility peaks corresponding to human presence. These are 7 aldehydes (acrolein, 2-methylpropanal, 3-methylbutanal, 2-ethacrolein, n-hexanal, n-heptanal, benzaldehyde), 3 ketones (acetone, 2-pentanone, 4-methyl-2-pentanone), 5 esters (ethyl formate, ethyl propionate, vinyl butyrate, butyl acetate, ethyl isovalerate), one alcohol (2-methyl-1-propanol) and one organic acid (acetic acid). The limits of detection (0.05-7.2 ppb) and relative standard deviations (0.6-11%) should be sufficient for detecting these markers of human presence in field conditions. This study shows that GC-IMS can be used as a portable field detector of hidden or entrapped people.


Assuntos
Testes Respiratórios/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pele/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Adulto , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa