Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.316
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(16): 3400-3413.e20, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541197

RESUMO

Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here, we identify a widely distributed bacterial gene cluster that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids. Ablation of the microbiota in uricase-deficient mice causes severe hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.


Assuntos
Gota , Hominidae , Hiperuricemia , Adulto , Animais , Humanos , Camundongos , Gota/genética , Gota/metabolismo , Hominidae/genética , Hiperuricemia/genética , Mamíferos/metabolismo , Urato Oxidase/genética , Ácido Úrico/metabolismo , Evolução Molecular
2.
Cell ; 185(4): 603-613.e15, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35026152

RESUMO

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Imunidade/imunologia , SARS-CoV-2/imunologia , Células T Auxiliares Foliculares/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Adulto , Linfócitos B/imunologia , Vacina BNT162/imunologia , COVID-19/sangue , Células Clonais , Estudos de Coortes , Citocinas/metabolismo , Feminino , Centro Germinativo/imunologia , Cadeias beta de HLA-DP/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Células Jurkat , Linfonodos/metabolismo , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417860

RESUMO

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Diapausa , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Células Clonais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Immunol ; 23(5): 781-790, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383307

RESUMO

Although mRNA vaccine efficacy against severe coronavirus disease 2019 remains high, variant emergence has prompted booster immunizations. However, the effects of repeated exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens on memory T cells are poorly understood. Here, we utilize major histocompatibility complex multimers with single-cell RNA sequencing to profile SARS-CoV-2-responsive T cells ex vivo from humans with one, two or three antigen exposures, including vaccination, primary infection and breakthrough infection. Exposure order determined the distribution between spike-specific and non-spike-specific responses, with vaccination after infection leading to expansion of spike-specific T cells and differentiation to CCR7-CD45RA+ effectors. In contrast, individuals after breakthrough infection mount vigorous non-spike-specific responses. Analysis of over 4,000 epitope-specific T cell antigen receptor (TCR) sequences demonstrates that all exposures elicit diverse repertoires characterized by shared TCR motifs, confirmed by monoclonal TCR characterization, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and current vaccination protocols continue to expand and differentiate spike-specific memory.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD8-Positivos , Humanos , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas , Vacinas de mRNA
5.
Cell ; 177(3): 654-668.e15, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929900

RESUMO

New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.


Assuntos
Células-Tronco Embrionárias/metabolismo , Neurogênese , Animais , Diferenciação Celular , Giro Denteado/metabolismo , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
7.
Nature ; 632(8025): 622-629, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112696

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.


Assuntos
Anticorpos Antivirais , Autoanticorpos , COVID-19 , Reações Cruzadas , Epitopos , Mimetismo Molecular , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/complicações , Reações Cruzadas/imunologia , Epitopos/imunologia , Epitopos/química , Mimetismo Molecular/imunologia , Fosfoproteínas/química , Fosfoproteínas/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Nexinas de Classificação/química , Nexinas de Classificação/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Síndrome de Resposta Inflamatória Sistêmica/virologia , Linfócitos T/imunologia
8.
Cell ; 152(1-2): 340-51, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332765

RESUMO

Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16(INK4a) with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death. In 14 of 14 tested tumor models, expression of p16(LUC) was focally activated by early neoplastic events, enabling visualization of tumors with sensitivity exceeding other imaging modalities. Activation of p16(INK4a) was noted in the emerging neoplasm and surrounding stromal cells. This work suggests that p16(INK4a) activation is a characteristic of all emerging cancers, making the p16(LUC) allele a sensitive, unbiased reporter of neoplastic transformation.


Assuntos
Envelhecimento/genética , Biomarcadores , Transformação Celular Neoplásica , Inibidor p16 de Quinase Dependente de Ciclina/genética , Luciferases/genética , Neoplasias/genética , Animais , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Técnicas de Introdução de Genes , Camundongos , Neoplasias/fisiopatologia , Ferimentos e Lesões/genética
9.
Nature ; 607(7919): 527-533, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794479

RESUMO

Immature dentate granule cells (imGCs) arising from adult hippocampal neurogenesis contribute to plasticity and unique brain functions in rodents1,2 and are dysregulated in multiple human neurological disorders3-5. Little is known about the molecular characteristics of adult human hippocampal imGCs, and even their existence is under debate1,6-8. Here we performed single-nucleus RNA sequencing aided by a validated machine learning-based analytic approach to identify imGCs and quantify their abundance in the human hippocampus at different stages across the lifespan. We identified common molecular hallmarks of human imGCs across the lifespan and observed age-dependent transcriptional dynamics in human imGCs that suggest changes in cellular functionality, niche interactions and disease relevance, that differ from those in mice9. We also found a decreased number of imGCs with altered gene expression in Alzheimer's disease. Finally, we demonstrated the capacity for neurogenesis in the adult human hippocampus with the presence of rare dentate granule cell fate-specific proliferating neural progenitors and with cultured surgical specimens. Together, our findings suggest the presence of a substantial number of imGCs in the adult human hippocampus via low-frequency de novo generation and protracted maturation, and our study reveals their molecular properties across the lifespan and in Alzheimer's disease.


Assuntos
Envelhecimento , Hipocampo , Longevidade , Neurogênese , Neurônios , Adulto , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Proliferação de Células , Giro Denteado/citologia , Giro Denteado/patologia , Perfilação da Expressão Gênica , Hipocampo/citologia , Hipocampo/patologia , Humanos , Longevidade/genética , Aprendizado de Máquina , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica
10.
Plant Cell ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102899

RESUMO

Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The tomato (Solanum lycopersicum) anthocyanin reduced (are) mutant harbors a mutation in FLAVANONE 3-HYDROXYLASE (F3H), resulting in impaired flavonol antioxidant biosynthesis. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, phenotypes that are accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent reactive oxygen species (ROS) accumulation in pollen and restored the reduced viability, germination, and tube elongation of are to VF36 levels. Overexpression of F3H in VF36 prevented temperature-driven ROS increases and impaired pollen performance, revealing that flavonol biosynthesis promotes thermotolerance. Although stigmas of are had reduced flavonol and elevated ROS levels, the growth of are pollen tubes was similarly impaired in both are and VF36 pistils. RNA-seq was performed at optimal and stress temperatures in are, VF36, and the F3H overexpression line at multiple timepoints across pollen tube elongation. The number of differentially expressed genes increased over time under elevated temperatures in all genotypes, with the greatest number in are. These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that lead to reproductive failure.

11.
Nature ; 597(7877): 549-554, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497417

RESUMO

Monoclonal antibody therapies targeting tumour antigens drive cancer cell elimination in large part by triggering macrophage phagocytosis of cancer cells1-7. However, cancer cells evade phagocytosis using mechanisms that are incompletely understood. Here we develop a platform for unbiased identification of factors that impede antibody-dependent cellular phagocytosis (ADCP) using complementary genome-wide CRISPR knockout and overexpression screens in both cancer cells and macrophages. In cancer cells, beyond known factors such as CD47, we identify many regulators of susceptibility to ADCP, including the poorly characterized enzyme adipocyte plasma membrane-associated protein (APMAP). We find that loss of APMAP synergizes with tumour antigen-targeting monoclonal antibodies and/or CD47-blocking monoclonal antibodies to drive markedly increased phagocytosis across a wide range of cancer cell types, including those that are otherwise resistant to ADCP. Additionally, we show that APMAP loss synergizes with several different tumour-targeting monoclonal antibodies to inhibit tumour growth in mice. Using genome-wide counterscreens in macrophages, we find that the G-protein-coupled receptor GPR84 mediates enhanced phagocytosis of APMAP-deficient cancer cells. This work reveals a cancer-intrinsic regulator of susceptibility to antibody-driven phagocytosis and, more broadly, expands our knowledge of the mechanisms governing cancer resistance to macrophage phagocytosis.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/genética , Sistemas CRISPR-Cas , Citofagocitose/genética , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Antígeno CD47/antagonistas & inibidores , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Edição de Genes , Técnicas de Inativação de Genes , Humanos , Linfoma de Células T/imunologia , Linfoma de Células T/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Receptores Acoplados a Proteínas G/metabolismo
12.
PLoS Genet ; 20(3): e1010719, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457441

RESUMO

DNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals. The relatively large numbers of individuals allowed us to identify additional genomic MHM regions on the Z chromosome that were significantly differentially methylated between the sexes. These regions appear to down-regulate local gene expression in males, but not remove it entirely (unlike the lncRNAs identified in the initial MHM regions). These MHM regions were further tested and the most balanced genes appear to show decreased expression in males, whilst methylation appeared to be far more correlated with gene expression in the less balanced, as compared to the most balanced genes. In addition, quantitative trait loci (QTL) that regulate variation in methylation on the Z chromosome, and those loci that regulate methylation on the autosomes that derive from the Z chromosome were mapped. Trans-effect hotspots were also identified that were based on the autosomes but affected the Z, and also one that was based on the Z chromosome but that affected both autosomal and sex chromosome DNA methylation regulation. We show that both cis and trans loci that originate from the Z chromosome never exhibit an interaction with sex, whereas trans loci originating from the autosomes but affecting the Z chromosome always display such an interaction. Our results highlight how additional MHM regions are actually present on the Z chromosome, and they appear to have smaller-scale effects on gene expression in males. Quantitative variation in methylation is also regulated both from the autosomes to the Z chromosome, and from the Z chromosome to the autosomes.


Assuntos
Galinhas , Cromossomos Sexuais , Animais , Masculino , Galinhas/genética , Metilação de DNA/genética , Mecanismo Genético de Compensação de Dose , Genoma , Mamíferos/genética , Cromossomos Sexuais/genética
13.
N Engl J Med ; 389(14): 1273-1285, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37632466

RESUMO

BACKGROUND: Five modifiable risk factors are associated with cardiovascular disease and death from any cause. Studies using individual-level data to evaluate the regional and sex-specific prevalence of the risk factors and their effect on these outcomes are lacking. METHODS: We pooled and harmonized individual-level data from 112 cohort studies conducted in 34 countries and 8 geographic regions participating in the Global Cardiovascular Risk Consortium. We examined associations between the risk factors (body-mass index, systolic blood pressure, non-high-density lipoprotein cholesterol, current smoking, and diabetes) and incident cardiovascular disease and death from any cause using Cox regression analyses, stratified according to geographic region, age, and sex. Population-attributable fractions were estimated for the 10-year incidence of cardiovascular disease and 10-year all-cause mortality. RESULTS: Among 1,518,028 participants (54.1% of whom were women) with a median age of 54.4 years, regional variations in the prevalence of the five modifiable risk factors were noted. Incident cardiovascular disease occurred in 80,596 participants during a median follow-up of 7.3 years (maximum, 47.3), and 177,369 participants died during a median follow-up of 8.7 years (maximum, 47.6). For all five risk factors combined, the aggregate global population-attributable fraction of the 10-year incidence of cardiovascular disease was 57.2% (95% confidence interval [CI], 52.4 to 62.1) among women and 52.6% (95% CI, 49.0 to 56.1) among men, and the corresponding values for 10-year all-cause mortality were 22.2% (95% CI, 16.8 to 27.5) and 19.1% (95% CI, 14.6 to 23.6). CONCLUSIONS: Harmonized individual-level data from a global cohort showed that 57.2% and 52.6% of cases of incident cardiovascular disease among women and men, respectively, and 22.2% and 19.1% of deaths from any cause among women and men, respectively, may be attributable to five modifiable risk factors. (Funded by the German Center for Cardiovascular Research (DZHK); ClinicalTrials.gov number, NCT05466825.).


Assuntos
Doenças Cardiovasculares , Fatores de Risco de Doenças Cardíacas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/mortalidade , Diabetes Mellitus , Fatores de Risco , Fumar/efeitos adversos , Internacionalidade
14.
Nat Methods ; 20(7): 1095-1103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36973547

RESUMO

Monitoring spiking activity across large neuronal populations at behaviorally relevant timescales is critical for understanding neural circuit function. Unlike calcium imaging, voltage imaging requires kilohertz sampling rates that reduce fluorescence detection to near shot-noise levels. High-photon flux excitation can overcome photon-limited shot noise, but photobleaching and photodamage restrict the number and duration of simultaneously imaged neurons. We investigated an alternative approach aimed at low two-photon flux, which is voltage imaging below the shot-noise limit. This framework involved developing positive-going voltage indicators with improved spike detection (SpikeyGi and SpikeyGi2); a two-photon microscope ('SMURF') for kilohertz frame rate imaging across a 0.4 mm × 0.4 mm field of view; and a self-supervised denoising algorithm (DeepVID) for inferring fluorescence from shot-noise-limited signals. Through these combined advances, we achieved simultaneous high-speed deep-tissue imaging of more than 100 densely labeled neurons over 1 hour in awake behaving mice. This demonstrates a scalable approach for voltage imaging across increasing neuronal populations.


Assuntos
Microscopia , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Algoritmos , Cálcio
15.
Proc Natl Acad Sci U S A ; 120(2): e2216903120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598948

RESUMO

KIF1A is a highly processive vesicle transport motor in the kinesin-3 family. Mutations in KIF1A lead to neurodegenerative diseases including hereditary spastic paraplegia. We applied optical tweezers to study the ability of KIF1A to generate and sustain force against hindering loads. We used both the three-bead assay, where force is oriented parallel to the microtubule, and the traditional single-bead assay, where force is directed along the radius of the bead, resulting in a vertical force component. The average force and attachment duration of KIF1A in the three-bead assay were substantially greater than those observed in the single-bead assay. Thus, vertical forces accelerate termination of force ramps of KIF1A. Average KIF1A termination forces were slightly lower than the kinesin-1 KIF5B, and the median attachment duration of KIF1A was >10-fold shorter than KIF5B under hindering loads. KIF1A rapidly reengages with microtubules after detachment, as observed previously. Strikingly, quantification enabled by the three-bead assay shows that reengagement largely occurs within 2 ms of detachment, indicating that KIF1A has a nearly 10-fold faster reengagement rate than KIF5B. We found that rapid microtubule reengagement is not due to KIF1A's positively charged loop-12; however, removal of charge from this loop diminished the unloaded run length at near physiological ionic strength. Both loop-12 and the microtubule nucleotide state have modulatory effects on reengagement under load, suggesting a role for the microtubule lattice in KIF1A reengagement. Our results reveal adaptations of KIF1A that lead to a model of superengaging transport under load.


Assuntos
Cinesinas , Paraplegia Espástica Hereditária , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Mutação , Paraplegia Espástica Hereditária/genética , Transporte Biológico , Microtúbulos/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844230

RESUMO

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Assuntos
Arrestinas , Transdução de Sinais , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Regulação Alostérica , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Fosforilação , beta-Arrestina 2/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(31): e2308798120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487074

RESUMO

Mammalian infants depend on parental care for survival, with numerous consequences for their behavioral development. We investigated the epigenetic and neurodevelopmental mechanisms mediating the impact of early biparental care on development of alloparenting behavior, or caring for offspring that are not one's own. We find that receiving high parental care early in life leads to slower epigenetic aging of both sexes and widespread male-specific differential expression of genes related to synaptic transmission and autism in the nucleus accumbens. Examination of parental care composition indicates that high-care fathers promote a male-specific increase in excitatory synapses and increases in pup retrieval behavior as juveniles. Interestingly, females raised by high-care fathers have the opposite behavioral response and display fewer pup retrievals. These results support the concept that neurodevelopmental trajectories are programmed by different features of early-life parental care and reveal that male neurodevelopmental processes are uniquely sensitive to care by fathers.


Assuntos
Comportamento Animal , Pai , Humanos , Feminino , Animais , Masculino , Comportamento Animal/fisiologia , Comportamento Materno/fisiologia , Núcleo Accumbens , Pais , Comportamento Paterno , Arvicolinae/fisiologia
18.
Circulation ; 149(4): 305-316, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38047387

RESUMO

BACKGROUND: It is unknown whether dietary intake of polyunsaturated fatty acids (PUFA) modifies the cardiovascular disease (CVD) risk associated with a family history of CVD. We assessed interactions between biomarkers of low PUFA intake and a family history in relation to long-term CVD risk in a large consortium. METHODS: Blood and tissue PUFA data from 40 885 CVD-free adults were assessed. PUFA levels ≤25th percentile were considered to reflect low intake of linoleic, alpha-linolenic, and eicosapentaenoic/docosahexaenoic acids (EPA/DHA). Family history was defined as having ≥1 first-degree relative who experienced a CVD event. Relative risks with 95% CI of CVD were estimated using Cox regression and meta-analyzed. Interactions were assessed by analyzing product terms and calculating relative excess risk due to interaction. RESULTS: After multivariable adjustments, a significant interaction between low EPA/DHA and family history was observed (product term pooled RR, 1.09 [95% CI, 1.02-1.16]; P=0.01). The pooled relative risk of CVD associated with the combined exposure to low EPA/DHA, and family history was 1.41 (95% CI, 1.30-1.54), whereas it was 1.25 (95% CI, 1.16-1.33) for family history alone and 1.06 (95% CI, 0.98-1.14) for EPA/DHA alone, compared with those with neither exposure. The relative excess risk due to interaction results indicated no interactions. CONCLUSIONS: A significant interaction between biomarkers of low EPA/DHA intake, but not the other PUFA, and a family history was observed. This novel finding might suggest a need to emphasize the benefit of consuming oily fish for individuals with a family history of CVD.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Fatores de Risco , Ácidos Docosa-Hexaenoicos , Biomarcadores
19.
RNA ; 29(10): 1610-1620, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37491319

RESUMO

Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.


Assuntos
Archaea , RNA , Archaea/genética , Methanosarcina/genética , Metanol , Bactérias/genética , Ribossomos/genética
20.
PLoS Biol ; 20(11): e3001885, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441764

RESUMO

N6-methyladenosine (m6A) modification of RNA regulates normal and cancer biology, but knowledge of its function on long noncoding RNAs (lncRNAs) remains limited. Here, we reveal that m6A regulates the breast cancer-associated human lncRNA HOTAIR. Mapping m6A in breast cancer cell lines, we identify multiple m6A sites on HOTAIR, with 1 single consistently methylated site (A783) that is critical for HOTAIR-driven proliferation and invasion of triple-negative breast cancer (TNBC) cells. Methylated A783 interacts with the m6A "reader" YTHDC1, promoting chromatin association of HOTAIR, proliferation and invasion of TNBC cells, and gene repression. A783U mutant HOTAIR induces a unique antitumor gene expression profile and displays loss-of-function and antimorph behaviors by impairing and, in some cases, causing opposite gene expression changes induced by wild-type (WT) HOTAIR. Our work demonstrates how modification of 1 base in an lncRNA can elicit a distinct gene regulation mechanism and drive cancer-associated phenotypes.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Biologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa