Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(8): 1298-1311, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561643

RESUMO

Pigmentary glaucoma (PG) is a common glaucoma subtype that results from release of pigment from the iris, called pigment dispersion syndrome (PDS), and its deposition throughout the anterior chamber of the eye. Although PG has a substantial heritable component, no causative genes have yet been identified. We used whole exome sequencing of two independent pedigrees to identify two premelanosome protein (PMEL) variants associated with heritable PDS/PG. PMEL encodes a key component of the melanosome, the organelle essential for melanin synthesis, storage and transport. Targeted screening of PMEL in three independent cohorts (n = 394) identified seven additional PDS/PG-associated non-synonymous variants. Five of the nine variants exhibited defective processing of the PMEL protein. In addition, analysis of PDS/PG-associated PMEL variants expressed in HeLa cells revealed structural changes to pseudomelanosomes indicating altered amyloid fibril formation in five of the nine variants. Introduction of 11-base pair deletions to the homologous pmela in zebrafish by the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 method caused profound pigmentation defects and enlarged anterior segments in the eye, further supporting PMEL's role in ocular pigmentation and function. Taken together, these data support a model in which missense PMEL variants represent dominant negative mutations that impair the ability of PMEL to form functional amyloid fibrils. While PMEL mutations have previously been shown to cause pigmentation and ocular defects in animals, this research is the first report of mutations in PMEL causing human disease.


Assuntos
Glaucoma de Ângulo Aberto/genética , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/fisiologia , Adulto , Amiloide/metabolismo , Animais , Feminino , Células HeLa , Humanos , Iris/metabolismo , Masculino , Melanossomas/genética , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Linhagem , Pigmentação/genética , Sequenciamento do Exoma/métodos , Adulto Jovem , Peixe-Zebra
2.
Gen Comp Endocrinol ; 127(1): 59-65, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12161202

RESUMO

Using low (0.5nM) substrate levels we determined the activities of thyroxine (T4) outer-ring deiodination (ORD), T4 inner-ring deiodination (T4IRD) and 3,5,3(')-triiodothyronine (T3) IRD activities in the olfactory epithelium (OLF) and retina (RET) of laboratory-held immature 1-year-old rainbow trout and immature 2.5-year-old sockeye salmon. In both species all three deiodination activities were detected in OLF and RET. For OLF, no particular pathway predominated and activities were similar to those of brain. For RET, T3IRD activity was greater than T4ORD activity and in sockeye RET T3IRD activity exceeded that of liver. Trout immersion for 6 weeks in 100ppm T4 increased plasma T4 levels 3-fold and plasma T3 levels by 50% and caused the anticipated autoregulatory responses in brain and liver deiodination ( downward arrow T4ORD, upward arrow T4IRD, and upward arrow T3IRD); OLF deiodination and RET T4ORD activity were unaltered but RET T4IRD and T3IRD activities increased dramatically. Two injections of a GnRH analogue (20 microgkg(-1)) into sockeye increased plasma T3 levels but not T4 levels and decreased RET T4IRD and T3IRD activities without changing liver, brain, or OLF deiodination. We conclude that in salmonids the main TH deiodination pathways occur in OLF but show no regulation by T4 or GnRH. In contrast, T3IRD activity predominates in RET and can be regulated by T4 and GnRH, suggesting that for RET plasma may be the major T3 source. These findings have implications for thyroidal regulation of sensory functions during salmonid diadromous migrations.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Iodo/metabolismo , Oncorhynchus mykiss/metabolismo , Oncorhynchus/metabolismo , Hormônios Tireóideos/metabolismo , Tiroxina/farmacologia , Animais , Encéfalo/metabolismo , Fígado/metabolismo , Mucosa Olfatória/metabolismo , Retina/metabolismo , Tiroxina/sangue , Tiroxina/metabolismo , Tri-Iodotironina/sangue , Tri-Iodotironina/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-12664097

RESUMO

Using electroretinogram recording and microspectrophotometry we investigated spectral sensitivity and ultraviolet polarization sensitivity in three species of coral reef fishes commonly known as damselfishes. Here we show that three species of damselfishes (three-spot damselfish, Dascyllus trimaculatus; blacktail damselfish, D. melanurus; and blue-green chromis, Chromis viridis) have four classes of cone photoreceptors (lambda(max) ranges: ultraviolet 357-367 nm; short wavelength-sensitive 469-478 nm; medium wavelength-sensitive 482-493 nm; long wavelength-sensitive 512-524 nm; rods 499-500 nm). The three species shared similar combined spectral sensitivity but surprisingly complicated and varied polarization sensitivity. Damselfish examined in this study have three and four channel polarization sensitivity, the most complex polarization sensitivity recorded for any vertebrate. Such capacity could play an important role in mediating a conspecific visual communication network utilizing polarized light signals in the coral reef environment.


Assuntos
Peixes/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Algoritmos , Animais , Eletrorretinografia , Modelos Lineares , Modelos Estatísticos , Estimulação Luminosa , Análise de Regressão , Especificidade da Espécie , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa