Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Basic Res Cardiol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878210

RESUMO

Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.

2.
Basic Res Cardiol ; 116(1): 56, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642818

RESUMO

Ischemia-reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.


Assuntos
Traumatismo por Reperfusão Miocárdica , Fator de Transcrição STAT3 , Humanos , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 114(45): 12033-12038, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078377

RESUMO

It has been shown that growth hormone-releasing hormone (GHRH) reduces cardiomyocyte (CM) apoptosis, prevents ischemia/reperfusion injury, and improves cardiac function in ischemic rat hearts. However, it is still not known whether GHRH would be beneficial for life-threatening pathological conditions, like cardiac hypertrophy and heart failure (HF). Thus, we tested the myocardial therapeutic potential of GHRH stimulation in vitro and in vivo, using GHRH or its agonistic analog MR-409. We show that in vitro, GHRH(1-44)NH2 attenuates phenylephrine-induced hypertrophy in H9c2 cardiac cells, adult rat ventricular myocytes, and human induced pluripotent stem cell-derived CMs, decreasing expression of hypertrophic genes and regulating hypertrophic pathways. Underlying mechanisms included blockade of Gq signaling and its downstream components phospholipase Cß, protein kinase Cε, calcineurin, and phospholamban. The receptor-dependent effects of GHRH also involved activation of Gαs and cAMP/PKA, and inhibition of increase in exchange protein directly activated by cAMP1 (Epac1). In vivo, MR-409 mitigated cardiac hypertrophy in mice subjected to transverse aortic constriction and improved cardiac function. Moreover, CMs isolated from transverse aortic constriction mice treated with MR-409 showed improved contractility and reversal of sarcolemmal structure. Overall, these results identify GHRH as an antihypertrophic regulator, underlying its therapeutic potential for HF, and suggest possible beneficial use of its analogs for treatment of pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Insuficiência Cardíaca/metabolismo , Coração/fisiologia , Animais , Apoptose/efeitos dos fármacos , Calcineurina/metabolismo , Cardiomegalia/induzido quimicamente , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenilefrina/farmacologia , Fosfolipase C beta/metabolismo , Proteína Quinase C/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
4.
J Cell Mol Med ; 21(12): 3670-3678, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28744974

RESUMO

Patients with ischaemic heart disease or chronic heart failure show altered levels of obestatin, suggesting a role for this peptide in human heart function. We have previously demonstrated that GH secretagogues and the ghrelin gene-derived peptides, including obestatin, exert cardiovascular effects by modulating cardiac inotropism and vascular tone, and reducing cell death and contractile dysfunction in hearts subjected to ischaemia/reperfusion (I/R), through the Akt/nitric oxide (NO) pathway. However, the mechanisms underlying the cardiac actions of obestatin remain largely unknown. Thus, we suggested that obestatin-induced activation of PI3K/Akt/NO and PKG signalling is implicated in protection of the myocardium when challenged by adrenergic, endothelinergic or I/R stress. We show that obestatin exerts an inhibitory tone on the performance of rat papillary muscle in both basal conditions and under ß-adrenergic overstimulation, through endothelial-dependent NO/cGMP/PKG signalling. This pathway was also involved in the vasodilator effect of the peptide, used both alone and under stress induced by endothelin-1. Moreover, when infused during early reperfusion, obestatin reduced infarct size in isolated I/R rat hearts, through an NO/PKG pathway, comprising ROS/PKC signalling, and converging on mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels. Overall, our results suggest that obestatin regulates cardiovascular function in stress conditions and induces cardioprotection by mechanisms dependent on activation of an NO/soluble guanylate cyclase (sGC)/PKG pathway. In fact, obestatin counteracts exaggerated ß-adrenergic and endothelin-1 activity, relevant factors in heart failure, suggesting multiple positive effects of the peptide, including the lowering of cardiac afterload, thus representing a potential candidate in pharmacological post-conditioning.


Assuntos
Cardiotônicos/farmacologia , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Óxido Nítrico/metabolismo , Hormônios Peptídicos/farmacologia , Animais , Cardiotônicos/química , Cardiotônicos/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Endotelina-1/antagonistas & inibidores , Endotelina-1/farmacologia , Regulação da Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Técnicas de Cultura de Órgãos , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/metabolismo , Músculos Papilares/patologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo
5.
Cardiovasc Diabetol ; 16(1): 71, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569217

RESUMO

Mechanisms underlying the pathogenesis of ischemia/reperfusion injury are particularly complex, multifactorial and highly interconnected. A complex and entangled interaction is also emerging between platelet function, antiplatelet drugs, coronary diseases and ischemia/reperfusion injury, especially in diabetic conditions. Here we briefly summarize features of antiplatelet therapy in type 2 diabetes (T2DM). We also treat the influence of T2DM on ischemia/reperfusion injury and how anti-platelet therapies affect post-ischemic myocardial damage through pleiotropic properties not related to their anti-aggregating effects. miRNA-based signature associated with T2DM and its cardiovascular disease complications are also briefly considered. Influence of anti-platelet therapies and different effects of healthy and diabetic platelets on ischemia/reperfusion injury need to be further clarified in order to enhance patient benefits from antiplatelet therapy and revascularization. Here we provide insight on the difficulty to reduce the cardiovascular risk in diabetic patients and report novel information on the cardioprotective role of widely used anti-aggregant drugs.


Assuntos
Aspirina/uso terapêutico , Plaquetas/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Inibidores da Agregação Plaquetária/uso terapêutico , Animais , Aspirina/efeitos adversos , Plaquetas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Resistência a Medicamentos , Humanos , Precondicionamento Isquêmico Miocárdico/efeitos adversos , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Inibidores da Agregação Plaquetária/efeitos adversos , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
6.
Pflugers Arch ; 465(7): 1031-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23319164

RESUMO

Catestatin (CST) limits myocardial ischaemia/reperfusion (I/R) injury with unknown mechanisms. Clearly phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) isoforms, including intra-mitochondrial PKCε, mitochondrial KATP (mitoKATP) channels and subsequent reactive oxygen species (ROS)-signalling play important roles in postconditioning cardioprotection, preventing mitochondrial permeability transition pore (mPTP) opening. Therefore, we studied the role of these extra- and intra-mitochondrial factors in CST-induced protection. Isolated rat hearts and H9c2 cells underwent I/R and oxidative stress, respectively. In isolated hearts CST (75nM, CST-Post) given in early-reperfusion significantly reduced infarct size, limited post-ischaemic contracture, and improved recovery of developed left ventricular pressure. PI3K inhibitor, LY-294002 (LY), large spectrum PKC inhibitor, Chelerythrine (CHE), specific PKCε inhibitor (εV1-2), mitoKATP channel blocker, 5-Hydroxydecanoate (5HD) or ROS scavenger, 2-mercaptopropionylglycine (MPG) abolished the infarct-sparing effect of CST. Notably the CST-induced contracture limitation was maintained during co-infusion of 5HD, MPG or εV1-2, but it was lost during co-infusion of LY or CHE. In H9c2 cells challenged with H2O2, mitochondrial depolarization (an index of mPTP opening studied with JC1-probe) was drastically limited by CST (75nM). Our results suggest that the protective signalling pathway activated by CST includes mitoKATP channels, ROS signalling and prevention of mPTP opening, with a central role for upstream PI3K/Akt and PKCs. In fact, all inhibitors completely abolished CST-infarct-sparing effect. Since CST-anti-contracture effect cannot be explained by intra-mitochondrial mechanisms (PKCε activation and mitoKATP channel opening) or ROS signalling, it is proposed that these downstream signals are part of a reverberant loop which re-activates upstream PKCs, which therefore play a pivotal role in CST-induced protection.


Assuntos
Cardiotônicos/farmacologia , Cromogranina A/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais , Animais , Cardiotônicos/uso terapêutico , Linhagem Celular , Cromogranina A/uso terapêutico , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Canais de Potássio/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
7.
J Cell Biochem ; 113(3): 800-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22020979

RESUMO

In recent years cardiac tissue engineering has emerged as a promising field aimed at developing suitable techniques to repair the infarcted myocardium with a combination of cells, biomaterials, and regulative factors. In particular it could stand for an alternative strategy to simple in situ cellular implantation. In the present study our purpose was to analyze the interaction between a hyaluronan-based mesh (HYALONECT®) and neonatal murine ventricular myocytes (NMVMs). Specifically, we investigated morphological and functional characteristics of cardiomyocytes cultured on HYALONECT® in view of its employment in heart repair. Both living and fixed cells analysis was performed on in toto scaffolds with confocal microscopy. NMVMs adhesion on HYALONECT® was studied by tracking sarcomeric α-actinin immunofluorescence staining. The structural features of NMVMs adherent onto HYALONECT® were investigated at 24, 48, 72 h, and 7 days of culture by immunofluorescence for sarcomeric α-actinin and connexin-43. We observed a progressive morphological organization of the cells inside the biopolymer, with both clear sarcomeric arrangement along the scaffold fibers and gap junctions development between adjacent cells. Finally, in vivo intracellular calcium measurements performed using calcium fluorimetric confocal imaging revealed the presence of spontaneous calcium transients and contractile activity of NMVMs adherent onto HYALONECT® up to 48 h from seeding, indicating a progressive differentiation of the cells toward the adult phenotype. In conclusion, our results demonstrate that HYALONECT® allowed NMVMs to adhere to the fibers and to develop functional properties, displaying suitable features as a scaffold to perform heart tissue engineering.


Assuntos
Ácido Hialurônico , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Alicerces Teciduais , Animais , Animais Recém-Nascidos , Adesão Celular , Separação Celular , Células Cultivadas , Ventrículos do Coração/citologia , Camundongos
8.
Cardiovasc Diabetol ; 11: 129, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23066908

RESUMO

BACKGROUND: The aim of this study was to investigate whether obestatin (OB), a peptide mediator encoded by the ghrelin gene exerting a protective effect in ischemic reperfused heart, is able to reduce cardiac dysfunctions in adult diabetic rats. METHODS: Diabetes was induced by STZ injection (50 mg/kg) in Wistar rats (DM). OB was administered (25 µg/kg) twice a day for 6 weeks. Non-diabetic (ND) rats and DM rats were distributed into four groups: untreated ND, OB-treated ND, untreated DM, OB-treated DM. Cardiac contractility and ß-adrenergic response were studied on isolated papillary muscles. Phosphorylation of AMPK, Akt, ERK1/2 and GSK3ß as well ß-1 adrenoreceptors levels were detected by western blot, while α-MHC was measured by RT-PCR. RESULTS: OB preserved papillary muscle contractility (85 vs 27% of ND), ß-adrenergic response (103 vs 65% of ND), as well ß1-adrenoreceptors and α-MHC levels in diabetic myocardial tissue. Moreover, OB up-regulated the survival kinases Akt and ERK1/2, and enhanced AMPK and GSK3ß phosphorylation. OB corrected oxidative unbalance, reduced pro-inflammatory cytokine TNF-α plasma levels, NFkB translocation and pro-fibrogenic factors expression in diabetic myocardium. CONCLUSIONS: OB displays a significant beneficial effect against the alterations of contractility and ß-adrenergic response in the heart of STZ-treated diabetic rats, which was mainly associated with the ability of OB to up-regulate the transcription of ß1-adrenergic receptors and α-MHC; this protective effect was accompanied by the ability to restore oxidative balance and to promote phosphorylation/modulation of AMPK and pro-survival kinases such as Akt, ERK1/2 and GSK3ß.


Assuntos
Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiopatias/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Western Blotting , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Cardiopatias/etiologia , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Hipoglicemiantes/farmacologia , Mediadores da Inflamação/sangue , Masculino , Metformina/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatologia , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/metabolismo , Recuperação de Função Fisiológica , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
9.
J Cardiovasc Med (Hagerstown) ; 23(1): 1-11, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091532

RESUMO

2020 marked the 20th anniversary of the discovery of the angiotensin-converting enzyme 2 (ACE2). This major event that changed the way we see the renin-angiotensin system today could have passed quietly. Instead, the discovery that ACE2 is a major player in the severe acute respiratory syndrome coronavirus 2 pandemic has blown up the literature regarding this enzyme. ACE2 connects the classical arm renin-angiotensin system, consisting mainly of angiotensin II peptide and its AT1 receptor, with a protective arm, consisting mainly of the angiotensin 1-7 peptide and its Mas receptor. In this brief article, we have reviewed the literature to describe how ACE2 is a key protective arm enzyme in the function of many organs, particularly in the context of brain and cardiovascular function, as well as in renal, pulmonary and digestive homeostasis. We also very briefly review and refer to recent literature to present an insight into the role of ACE2 in determining the course of coronavirus diseases 2019.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Sistema Renina-Angiotensina/fisiologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Angiotensinas/fisiologia , Animais , COVID-19/complicações , COVID-19/metabolismo , COVID-19/virologia , Humanos , Camundongos , Especificidade de Órgãos , Ratos , Receptores de Angiotensina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , SARS-CoV-2/metabolismo
10.
Vascul Pharmacol ; 144: 106995, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35470102

RESUMO

Since coronary reperfusion was introduced into clinical practice in the late 1970s, the further translation of several successful animal experiments on cardioprotection into clinical practice has been disappointing to date. Animal experiments are often performed on young, healthy animals lacking the risk factors, co-morbidities and co-medications characteristic of acute myocardial infarction patients. Many hopes were kindled in 1986 when ischemic preconditioning was discovered. However, it is not yet known how long ischemia can last and what is the best modality for additional cardioprotection through conditioning to obtain benefits. There is a lack of experimental studies on the long-term effects of additional cardioprotection, in addition to the reduction in infarct size; in particular, there is a lack of studies on vessel protection, repair, inflammation, remodeling, and mortality. The reproducibility and robustness of experimental studies are often limited by species differences, the role of co-morbidities, vascular damage, inflammatory processes, and co-medications, which are not adequately considered. In particular, inflammatory processes, including NLRP3 inflammasome, play an important role in the long-term effects. Future studies should focus on interventions/agents with robust preclinical data and should recruit patients who truly have the potential to benefit from further cardioprotection. Here we focus on the main mechanisms and targets of cardioprotection during remote conditioning and their alteration by one of the most common co-morbidities, namely diabetes, in which microvascular lesions and inflammatory processes play extremely important roles.


Assuntos
Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Humanos , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Reprodutibilidade dos Testes , Fatores de Risco
11.
Vascul Pharmacol ; 145: 107001, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623548

RESUMO

Experimentally, many strong cardioprotective treatments have been identified in different animal models of acute ischaemia/reperfusion injury (IRI) and coronary artery disease (CAD). However, the translation of these cardioprotective therapies for the benefit of the patients into the clinical scenario has been very disappointing. The reasons for this lack are certainly multiple. Indeed, many confounding factors we must deal in clinical reality, such as aging, sex and inflammatory processes are neglected in many experiments. Due to the pivotal role of aging, sex and inflammation in determining cardiac ischaemic disease, in this review, we take into account age as a modifier of tolerance to IRI in the two sexes, dissecting aging and myocardial reperfusion injury mechanisms and the sex differences in tolerance to IRI. Then we focus on the role of the gut microbiota and the NLRP3 inflammasome in myocardial IRI and on the possibility to consider NLRP3 inflammasome as a potential target in the treatment of CAD in relationship with age and sex. Finally, we consider the cardioprotective mechanisms and cardioprotective treatments during aging in the two sexes.


Assuntos
Inflamassomos , Traumatismo por Reperfusão Miocárdica , Envelhecimento , Animais , Feminino , Isquemia , Masculino , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR
12.
J Clin Med ; 10(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477341

RESUMO

Extracellular vesicles (EV) are emerging early markers of myocardial damage and key mediators of cardioprotection. Therefore, EV are becoming fascinating tools to prevent cardiovascular disease and feasible weapons to limit ischaemia/reperfusion injury. It is well known that metabolic syndrome negatively affects vascular and endothelial function, thus creating predisposition to ischemic diseases. Additionally, sex is known to significantly impact myocardial injury and cardioprotection. Therefore, actions able to reduce risk factors related to comorbidities in ischaemic diseases are required to prevent maladaptive ventricular remodelling, preserve cardiac function, and prevent the onset of heart failure. This implies that early diagnosis and personalised medicine, also related to sex differences, are mandatory for primary or secondary prevention. Here, we report the contribution of EV as biomarkers and/or therapeutic tools in comorbidities predisposing to cardiac ischaemic disease. Whenever possible, attention is dedicated to data linking EV to sex differences.

13.
Vascul Pharmacol ; 140: 106873, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33992781

RESUMO

During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. However, reperfusion further exacerbates the damage of the ischemic heart. This type of injury is known as ischemia-reperfusion injury (IRI). Ischemic conditioning is a procedure which consists of brief cycles of ischemia and reperfusion in order to protect the myocardium against IRI. Remote ischemic conditioning (RIC), namely transient brief episodes of ischemia at a remote site before a subsequent damaging ischemia/reperfusion procedure of the target organ (e.g., the heart), protects against IRI. However, how the stimulus of RIC is transduced from the remote organ to the ischemic heart is still unknown. Recently, extracellular vesicles (EVs) have been proposed to have a role in the RIC procedure. The endothelium releases EVs and is also one of the tissues mostly exposed to EVs during their journey to the target organ. Moreover, EVs may have important roles in angiogenesis and, therefore, in the remodeling of post-ischemic organs. Here we analyze how EVs may contribute to the overall cardioprotective effect and the implication of the endothelium and its EVs in RIC mediated acute cardioprotection as well as in angiogenesis.


Assuntos
Vesículas Extracelulares , Traumatismo por Reperfusão Miocárdica , Endotélio , Humanos , Isquemia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio
14.
J Cell Biochem ; 110(1): 70-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20213742

RESUMO

Accumulating evidences point to a significant role for the chromogranin A (CgA)-derived peptide vasostatin 1 (VS-1) in the protective modulation of the cardiovascular activity, because of its ability to counteract the adrenergic signal. We have recently shown that VS-1 induces a PI3K-dependent-nitric oxide (NO) release by endothelial cells, contributing to explain the mechanism of its cardio-suppressive and vasodilator properties. However, the cellular processes upstream the eNOS activation exerted by this peptide are still unknown, as typical high-affinity receptors have not been identified. Here we hypothesize that in endothelial cells VS-1 acts, on the basis of its cationic and amphipathic properties, as a cell penetrating peptide, binding to heparan sulfate proteoglycans (HSPGs) and activating eNOS phosphorylation (Ser1179) through a PI3K-dependent, endocytosis-coupled mechanism. In bovine aortic endothelial cells (BAE-1 cells) endocytotic vesicles trafficking was quantified by confocal microscopy with a water-soluble membrane dye; caveolin 1 (Cav1) shift from plasma membrane was studied by immunofluorescence staining; VS-1-dependent eNOS phosphorylation was assessed by immunofluorescence and immunoblot analysis. Our experiments demonstrate that VS-1 induces a marked increase in the caveolae-dependent endocytosis, (115 +/- 23% endocytotic spots/cell/field in VS-1-treated cells with respect to control cells), that is significantly reduced by both heparinase III (HEP, 17 +/- 15% above control) and Wortmannin (Wm, 7 +/- 22% above control). Heparinase, Wortmannin, and methyl-beta-cyclodextrin (MbetaCD) abolish the VS-1-dependent eNOS phosphorylation (P(Ser1179)eNOS). These results suggest a novel signal transduction pathway for endogenous cationic and amphipathic peptides in endothelial cells: HSPGs interaction and caveolae endocytosis, coupled with a PI3K-dependent eNOS phosphorylation.


Assuntos
Cromogranina A/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteoglicanas/metabolismo , Androstadienos/farmacologia , Animais , Bovinos , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolina 1/metabolismo , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Heparina Liase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Wortmanina
15.
Am J Physiol Heart Circ Physiol ; 299(2): H470-81, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20525876

RESUMO

Obestatin, a newly discovered peptide encoded by the ghrelin gene, induces the expression of genes regulating pancreatic beta-cell differentiation, insulin biosynthesis, and glucose metabolism. It also activates antiapoptotic signaling pathways such as phosphoinositide 3-kinase (PI3K) and ERK1/2 in pancreatic beta-cells and human islets. Since these kinases have been shown to protect against myocardial injury, we sought to investigate whether obestatin would exert cardioprotective effects. Both isolated perfused rat heart and cultured cardiomyocyte models of ischemia-reperfusion (I/R) were used to measure infarct size and cell apoptosis as end points of injury. The presence of specific obestatin receptors on cardiac cells as well as the signaling pathways underlying the obestatin effect were also studied. In the isolated heart, the addition of rat obestatin-(1-23) before ischemia reduced infarct size and contractile dysfunction in a concentration-dependent manner, whereas obestatin-(23-1), a synthetic analog with an inverse aminoacid sequence, was ineffective. The cardioprotective effect of obestatin-(1-23) was observed at concentrations of 10-50 nmol/l and was abolished by inhibiting PI3K or PKC by the addition of wortmannin (100 nmol/l) or chelerythrine, (5 micromol/l), respectively. In rat H9c2 cardiac cells or isolated ventricular myocytes subjected to I/R, 50 nmol/l obestatin-(1-23) reduced cardiomyocyte apoptosis and reduced caspase-3 activation; the antiapoptotic effect was blocked by the inhibition of PKC, PI3K, or ERK1/2 pathways. In keeping with these functional findings, radioreceptor binding results revealed the presence of specific high-affinity obestatin-binding sites, mainly localized on membranes of the ventricular myocardium and cardiomyocytes. Our data suggest that, by acting on specific receptors, obestatin-(1-23) activates PI3K, PKC-epsilon, PKC-delta, and ERK1/2 signaling and protects cardiac cells against myocardial injury and apoptosis induced by I/R.


Assuntos
Apoptose , Contração Miocárdica , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Hormônios Peptídicos/metabolismo , Função Ventricular Esquerda , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Hormônios Peptídicos/administração & dosagem , Peptídeos/farmacologia , Perfusão , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/antagonistas & inibidores , Proteína Quinase C-épsilon/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Receptores de Grelina/metabolismo , Transdução de Sinais , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
16.
Basic Res Cardiol ; 105(5): 609-20, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20467749

RESUMO

Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.


Assuntos
Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Choque Séptico/fisiopatologia , Trombopoetina/metabolismo , Adolescente , Adulto , Animais , Proteínas Sanguíneas/farmacologia , Linhagem Celular , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Músculos Papilares/citologia , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/fisiologia , Ratos , Ratos Wistar , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo , Choque Séptico/sangue , Trombopoetina/farmacologia , Adulto Jovem
17.
Cell Mol Neurobiol ; 30(8): 1171-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21104119

RESUMO

The Chromogranin A (CgA)-derived anti-hypertensive peptide catestatin (CST) antagonizes catecholamine secretion, and is a negative myocardial inotrope acting via a nitric oxide-dependent mechanism. It is not known whether CST contributes to ischemia/reperfusion injury or is a component of a cardioprotective response to limit injury. Here, we tested whether CST by virtue of its negative inotropic activity improves post-ischemic cardiac function and cardiomyocyte survival. Three groups of isolated perfused hearts from adult Wistar rats underwent 30-min ischemia and 120-min reperfusion (I/R, Group 1), or were post-conditioned by brief ischemic episodes (PostC, 5-cycles of 10-s I/R at the beginning of 120-min reperfusion, Group 2), or with exogenous CST (75 nM for 20 min, CST-Post, Group-3) at the onset of reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated with nitroblue-tetrazolium staining. The CST (5 nM) effects were also tested in simulated ischemia/reperfusion experiments on cardiomyocytes isolated from young-adult rats, evaluating cell survival with propidium iodide labeling. Infarct size was 61 ± 6% of risk area in hearts subjected to I/R only. PostC reduced infarct size to 34 ± 5%. Infarct size in CST-Post was 36 ± 3% of risk area (P < 0.05 respect to I/R). CST-Post reduced post-ischemic rise of diastolic LVP, an index of contracture, and significantly improved post-ischemic recovery of developed LVP. In isolated cardiomyocytes, CST increased the cell viability rate by about 65% after simulated ischemia/reperfusion. These results suggest a novel cardioprotective role for CST, which appears mainly due to a direct reduction of post-ischemic myocardial damages and dysfunction, rather than to an involvement of adrenergic terminals and/or endothelium.


Assuntos
Cromogranina A/farmacologia , Coração/fisiopatologia , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Separação Celular , Sobrevivência Celular , Cromogranina A/uso terapêutico , Diástole/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/complicações , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fragmentos de Peptídeos/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações , Sístole/efeitos dos fármacos
18.
Antioxid Redox Signal ; 32(15): 1115-1134, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31892282

RESUMO

Significance: Regular exercise training can reduce myocardial damage caused by acute ischemia/reperfusion (I/R). Exercise can reproduce the phenomenon of ischemic preconditioning, due to the capacity of brief periods of ischemia to reduce myocardial damage caused by acute I/R. In addition, exercise may also activate the multiple kinase cascade responsible for cardioprotection even in the absence of ischemia. Recent Advances: Animal and human studies highlighted the fact that, besides to reduce risk factors related to cardiovascular disease, the beneficial effects of exercise are also due to its ability to induce conditioning of the heart. Exercise behaves as a physiological stress that triggers beneficial adaptive cellular responses, inducing a protective phenotype in the heart. The factors contributing to the exercise-induced heart preconditioning include stimulation of the anti-radical defense system and nitric oxide production, opioids, myokines, and adenosine-5'-triphosphate (ATP) dependent potassium channels. They appear to be also involved in the protective effect exerted by exercise against cardiotoxicity related to chemotherapy. Critical Issues and Future Directions: Although several experimental evidences on the protective effect of exercise have been obtained, the mechanisms underlying this phenomenon have not yet been fully clarified. Further studies are warranted to define precise exercise prescriptions in patients at risk of myocardial infarction or undergoing chemotherapy.


Assuntos
Exercício Físico , Isquemia Miocárdica/prevenção & controle , Animais , Humanos , Isquemia Miocárdica/fisiopatologia
19.
Cells ; 10(1)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374685

RESUMO

The biological relevance of extracellular vesicles (EV) released in an ischemia/reperfusion setting is still unclear. We hypothesized that the inflammatory microenvironment prevents cardioprotection mediated by endothelial cell (EC)-derived extracellular vesicles. The effects of naïve EC-derived EV (eEV) or eEV released in response to interleukin-3 (IL-3) (eEV-IL-3) were evaluated in cardiomyoblasts (H9c2) and rat hearts. In transwell assay, eEV protected the H9c2 exposed to hypoxia/reoxygenation (H/R) more efficiently than eEV-IL-3. Conversely, only eEV directly protected H9c2 cells to H/R-induced damage. Consistent with this latter observation, eEV, but not eEV-IL-3, exerted beneficial effects in the whole heart. Protein profiles of eEV and eEV-IL-3, established using label-free mass spectrometry, demonstrated that IL-3 drives changes in eEV-IL-3 protein cargo. Gene ontology analysis revealed that both eEV and eEV-IL-3 were equipped with full cardioprotective machinery, including the Nitric Oxide Signaling in the Cardiovascular System. eEV-IL-3 were also enriched in the endothelial-nitric oxide-synthase (eNOS)-antagonist caveolin-1 and proteins related to the inflammatory response. In vitro and ex vivo experiments demonstrated that a functional Mitogen-Activated Protein Kinase Kinase (MEK1/2)/eNOS/guanylyl-cyclase (GC) pathway is required for eEV-mediated cardioprotection. Consistently, eEV were found enriched in MEK1/2 and able to induce the expression of B-cell-lymphoma-2 (Bcl-2) and the phosphorylation of eNOS in vitro. We conclude that an inflammatory microenvironment containing IL-3 changes the eEV cargo and impairs eEV cardioprotective action.


Assuntos
Vesículas Extracelulares/metabolismo , Interleucina-3/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Células Endoteliais , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Mioblastos Cardíacos , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Wistar
20.
Endocrinology ; 149(1): 380-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901230

RESUMO

Diabetic cardiomyopathy is characterized by myocyte loss and myocardial fibrosis, leading to decreased elasticity and impaired contractile function. The study examines the downstream signaling whereby oxidative stress, induced by hyperglycemia, leads to myocardial fibrosis and impaired contractile function in the left ventricle of diabetic rats. It also examines the effects of dehydroepiandrosterone (DHEA), which prevents the oxidative damage induced by hyperglycemia in experimental models. DHEA was administered for 6 wk in the diet [0.02%, wt/wt)] to rats with streptozotocin-induced diabetes. Oxidative balance, advanced glycated end products (AGEs) and AGE receptors, transcription factors nuclear factor-kappaB and activator protein-1, and profibrogenic growth factors (connective tissue growth factor and TGFbeta1) were determined in the left ventricle of treated and untreated streptozotocin-diabetic rats. Structural and ultrastructural changes, and the contractile force developed by electrically driven papillary muscles, under basal conditions and after stimulation with isoproterenol, were also evaluated. Oxidative stress induced by hyperglycemia increased AGEs and AGE receptors and triggered a cascade of signaling, eventually leading to interstitial fibrosis. DHEA treatment, by improving oxidative balance, counteracted the enhanced AGE receptor activation and increase of profibrogenic factors and restored tissue levels of collagen I, collagen IV, and fibronectin to those of control animals. Moreover, DHEA completely restored the contractility of isolated papillary muscle. Oxidative stress led to cardiac fibrosis, the most important pathogenetic factor of the heart's impaired functional integrity in diabetes. Structural and ultrastructural changes and impairment of muscle function induced by experimental diabetes were minimized by DHEA treatment.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiopatias/etiologia , Miocárdio/patologia , Estresse Oxidativo/fisiologia , Animais , Fator de Crescimento do Tecido Conjuntivo , Desidroepiandrosterona/farmacologia , Desidroepiandrosterona/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Avaliação Pré-Clínica de Medicamentos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Cardiopatias/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Miocárdio/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Imunológicos/metabolismo , Estreptozocina , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa