Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Glia ; 70(5): 935-960, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35092321

RESUMO

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α-syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α-syn induced by striatal injection of α-syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α-syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α-syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α-syn inclusion formation is not the major driver in the early phases of PD-like neurodegeneration, but that microglia, activated by diffusible, oligomeric α-syn, may play a key role in this process. Our findings uncover new features of α-syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α-syn spreading.


Assuntos
Doença de Parkinson , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Microglia/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson/genética , alfa-Sinucleína/genética
2.
J Neurosci ; 30(22): 7516-27, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20519526

RESUMO

The development of novel therapeutic strategies for Alzheimer's disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-beta (Abeta) oligomer-induced synaptic damages and associated cognitive impairments that typify AD. To ensure long-term administration of CNTF in the brain, we used recombinant cells secreting CNTF encapsulated in alginate polymers. The implantation of these bioreactors in the brain of Abeta oligomer-infused mice led to a continuous secretion of recombinant CNTF and was associated with the robust improvement of cognitive performances. Most importantly, CNTF led to full recovery of cognitive functions associated with the stabilization of synaptic protein levels in the Tg2576 AD mouse model. In vitro as well as in vivo, CNTF activated a Janus kinase/signal transducer and activator of transcription-mediated survival pathway that prevented synaptic and neuronal degeneration. These preclinical studies suggest that CNTF and/or CNTF receptor-associated pathways may have AD-modifying activity through protection against progressive Abeta-related memory deficits. Our data also encourage additional exploration of ex vivo gene transfer for the prevention and/or treatment of AD.


Assuntos
Doença de Alzheimer/complicações , Fator Neurotrófico Ciliar/biossíntese , Fator Neurotrófico Ciliar/uso terapêutico , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Sinapses/efeitos dos fármacos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/genética , Encéfalo/patologia , Contagem de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Fator Neurotrófico Ciliar/administração & dosagem , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinapses/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/patologia , Sinaptossomos/ultraestrutura , Fatores de Tempo , Transfecção/métodos
3.
J Alzheimers Dis ; 62(1): 213-226, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29439327

RESUMO

BACKGROUND: With current treatments for Alzheimer's disease (AD) only providing temporary symptomatic benefits, disease modifying drugs are urgently required. This approach relies on improved understanding of the early pathophysiology of AD. A new hypothesis has emerged, in which early memory loss is considered a synapse failure caused by soluble amyloid-ß oligomers (Aßo). These small soluble Aßo, which precede the formation of larger fibrillar assemblies, may be the main cause of early AD pathologies. OBJECTIVE: The aim of the current study was to investigate the effect of acute administration of stabilized low-n amyloid-ß1-42 oligomers (Aßo1-42) on cognitive, inflammatory, synaptic, and neuronal markers in the rat. METHODS: Female and male Lister Hooded rats received acute intracerebroventricular (ICV) administration of either vehicle or 5 nmol of Aßo1-42 (10µL). Cognition was assessed in the novel object recognition (NOR) paradigm at different time points. Levels of inflammatory (IL-1ß, IL-6, TNF-α), synaptic (PSD-95, SNAP-25), and neuronal (n-acetylaspartate, parvalbumin-positive cells) markers were investigated in different brain regions (prefrontal and frontal cortex, striatum, dorsal and ventral hippocampus). RESULTS: Acute ICV administration of Aßo1-42 induced robust and enduring NOR deficits. These deficits were reversed by acute administration of donepezil and rolipram but not risperidone. Postmortem analysis revealed an increase in inflammatory markers, a decrease in synaptic markers and parvalbumin containing interneurons in the frontal cortex, with no evidence of widespread neuronal loss. CONCLUSION: Taken together the results suggest that acute administration of soluble low-n Aßo may be a useful model to study the early mechanisms involved in AD and provide us with a platform for testing novel therapeutic approaches that target the early underlying synaptic pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cognição/fisiologia , Inflamação/metabolismo , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Donepezila/farmacologia , Feminino , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nootrópicos/farmacologia , Distribuição Aleatória , Ratos , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Risperidona/farmacologia , Rolipram/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
4.
Neurotoxicology ; 53: 314-320, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26480858

RESUMO

Lactational exposure to low levels of the sum of the six indicator polychlorinated biphenyls (Σ6 NDL-PCBs, 10ng/kg/day) is known to lead to persistent anxious behavior in young and adult offspring mice at postnatal days 40 and 160, respectively. At more advanced life stages, we evaluated the effects on the mouse brain of neuronal stress induced by the synaptotoxic amyloid-beta (Aß) peptide. Perinatal exposure of lactating mice to Σ6 NDL-PCBs did not affect short-term memory performances of their offspring male mice aged 14 months as compared to control PCB-naive mice. However, following intracerebroventricular injection of soluble Aß oligomers, significant impairments in long-term memory were detected in the mice that had been lactationally treated with Σ6 NDL-PCBs. In addition, immunoblot analyses of the synaptosomal fraction of hippocampal tissues from treated mice revealed a lower expression of the synaptic proteins synaptophysin and PSD-95. Though preliminary, our findings suggest for the first time that early exposure to low levels of NDL-PCBs induce late neuronal vulnerability to amyloid stress. Additional experiments are needed to confirm whether early environmental influences are involved in the etiology of brain aging and cognitive decline.


Assuntos
Envelhecimento , Poluentes Ambientais/toxicidade , Lactação/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Transtornos Cognitivos/etiologia , Suscetibilidade a Doenças , Proteína 4 Homóloga a Disks-Large , Feminino , Guanilato Quinases/metabolismo , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Gravidez
5.
J Alzheimers Dis ; 52(3): 975-87, 2016 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-27163806

RESUMO

Oligomeric amyloid-ß (Aß) peptide contributes to impaired synaptic connections and neurodegenerative processes, and as such, represents a primary therapeutic target for Alzheimer's disease (AD)-modifying approaches. However, the lack of efficacy of drugs that inhibit production of Aß demonstrates the need for a better characterization of its toxic effects, both on synaptic and neuronal function. Here, we used conditioned medium obtained from recombinant HEK-AßPP cells expressing the human amyloid-ß protein precursor (Aß-CM), to investigate Aß-induced neurotoxic and synaptotoxic effects. Characterization of Aß-CM revealed that it contained picomolar amounts of cell-secreted Aß in its soluble form. Incubation of primary cortical neurons with Aß-CM led to significant decreases in synaptic protein levels as compared to controls. This effect was no longer observed in neurons incubated with conditioned medium obtained from HEK-AßPP cells grown in presence of the γ-secretase inhibitor, Semagacestat or LY450139 (LY-CM). However, neurotoxic and pro-apoptotic effects of Aß-CM were only partially prevented using LY-CM, which could be explained by other deleterious compounds related to chronic oxidative stress that were released by HEK-AßPP cells. Indeed, full neuroprotection was observed in cells exposed to LY-CM by additional treatment with the antioxidant resveratrol, or with the pluripotent n-3 polyunsaturated fatty acid docosahexaenoic acid. Inhibition of Aß production appeared necessary but insufficient to prevent neurodegenerative effects associated with AD due to other neurotoxic compounds that could exert additional deleterious effects on neuronal function and survival. Therefore, association of various types of protective agents needs to be considered when developing strategies for AD treatment.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Azepinas/farmacologia , Caspase 3/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Meios de Cultivo Condicionados/farmacologia , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fosfopiruvato Hidratase/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transfecção
6.
Food Chem ; 171: 397-404, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25308686

RESUMO

Docosahexaenoic acid (DHA) is increasingly considered for its health benefits. However, its use as functional food ingredient is still limited by its instability. In this work, we developed an efficient and solvent-free bioprocess for the synthesis of a phenolic ester of DHA. A fed-batch process catalyzed by Candida antarctica lipase B was optimised, leading to the production of 440 g/L vanillyl ester (DHA-VE). Structural characterisation of the purified product indicated acylation of the primary OH group of vanillyl alcohol. DHA-VE exhibited a high radical scavenging activity in acellular systems. In vivo experiments showed increased DHA levels in erythrocytes and brain tissues of mice fed DHA-VE-supplemented diet. Moreover, in vitro neuroprotective properties of DHA-VE were demonstrated in rat primary neurons exposed to amyloid-ß oligomers. In conclusion, DHA-VE synergized the main beneficial effects of two common natural biomolecules and therefore appears a promising functional ingredient for food applications.


Assuntos
Álcoois Benzílicos/química , Ácidos Docosa-Hexaenoicos/química , Ésteres/metabolismo , Oxirredutases/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dieta , Ácidos Docosa-Hexaenoicos/metabolismo , Enzimas Imobilizadas/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxirredutases/biossíntese , Oxirredutases/farmacologia , Ratos , Ratos Wistar
7.
J Alzheimers Dis ; 45(1): 195-204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25690661

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that has been linked to changes in cholesterol metabolism. Neuronal cholesterol content significantly influences the pro-apoptotic effect of amyloid-ß peptide42 (Aß42), which plays a key role in AD development. We previously reported that aged mice with reduced expression of the lipolysis stimulated lipoprotein receptor (LSR+/-), demonstrate membrane cholesterol accumulation and decreased intracellular lipid droplets in several brain regions, suggesting a potential role of LSR in brain cholesterol distribution. We questioned if these changes rendered the LSR+/- mouse more susceptible to Aß42-induced cognitive and biochemical changes. Results revealed that intracerebroventricular injection of oligomeric Aß42 in male 15-month old LSR+/+ and LSR+/- mice led to impairment in learning and long-term memory and decreased cortical cholesterol content of both groups; these effects were significantly amplified in the Aß42-injected LSR+/- group. Total latency of the Morris test was significantly and negatively correlated with cortical cholesterol content of the LSR+/- mice, but not of controls. Significantly lower cortical PSD95 and SNAP-25 levels were detected in Aß42-injected LSR+/- mice as compared to Aß42-injected LSR+/+ mice. In addition, 24S-hydroxy cholesterol metabolite levels were significantly higher in the cortex of LSR+/- mice. Taken together, these results suggest that changes in cortex cholesterol regulation as a result of the LSR+/- genotype were linked to increased susceptibility to amyloid stress, and we would therefore propose the aged LSR+/- mouse as a new model for understanding the link between modified cholesterol regulation as a risk factor for AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Colesterol/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores de Lipoproteínas/deficiência , Análise de Variância , Animais , Proteína 4 Homóloga a Disks-Large , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Guanilato Quinases/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hidroxicolesteróis/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro , Receptores de Lipoproteínas/genética , Análise de Regressão , Proteína 25 Associada a Sinaptossoma/metabolismo
8.
Biochimie ; 91(6): 804-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19303044

RESUMO

In the absence of efficient diagnostic and therapeutic tools, Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble beta-amyloid (Abeta) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Abeta oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Abeta-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD incidence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Abeta peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Abeta-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition-based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Abeta oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Metabolismo dos Lipídeos/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Apoptose/fisiologia , Ácidos Graxos Ômega-3/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa