Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Wound J ; 21(7): e70000, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994867

RESUMO

This study aimed to improve the predictive accuracy of the Braden assessment for pressure injury risk in skilled nursing facilities (SNFs) by incorporating real-world data and training a survival model. A comprehensive analysis of 126 384 SNF stays and 62 253 in-house pressure injuries was conducted using a large calibrated wound database. This study employed a time-varying Cox Proportional Hazards model, focusing on variations in Braden scores, demographic data and the history of pressure injuries. Feature selection was executed through a forward-backward process to identify significant predictive factors. The study found that sensory and moisture Braden subscores were minimally contributive and were consequently discarded. The most significant predictors of increased pressure injury risk were identified as a recent (within 21 days) decrease in Braden score, low subscores in nutrition, friction and activity, and a history of pressure injuries. The model demonstrated a 10.4% increase in predictive accuracy compared with traditional Braden scores, indicating a significant improvement. The study suggests that disaggregating Braden scores and incorporating detailed wound histories and demographic data can substantially enhance the accuracy of pressure injury risk assessments in SNFs. This approach aligns with the evolving trend towards more personalized and detailed patient care. These findings propose a new direction in pressure injury risk assessment, potentially leading to more effective and individualized care strategies in SNFs. The study highlights the value of large-scale data in wound care, suggesting its potential to enhance quantitative approaches for pressure injury risk assessment and supporting more accurate, data-driven clinical decision-making.


Assuntos
Úlcera por Pressão , Instituições de Cuidados Especializados de Enfermagem , Humanos , Instituições de Cuidados Especializados de Enfermagem/estatística & dados numéricos , Úlcera por Pressão/epidemiologia , Úlcera por Pressão/prevenção & controle , Medição de Risco/métodos , Masculino , Feminino , Idoso , Estudos de Coortes , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Fatores de Risco , Modelos de Riscos Proporcionais
2.
IEEE J Biomed Health Inform ; 28(2): 666-677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37028088

RESUMO

Chronic wounds affect millions of people worldwide every year. An adequate assessment of a wound's prognosis is critical to wound care, guiding clinical decision making by helping clinicians understand wound healing status, severity, triaging and determining the efficacy of a treatment regimen. The current standard of care involves using wound assessment tools, such as Pressure Ulcer Scale for Healing (PUSH) and Bates-Jensen Wound Assessment Tool (BWAT), to determine wound prognosis. However, these tools involve manual assessment of a multitude of wound characteristics and skilled consideration of a variety of factors, thus, making wound prognosis a slow process which is prone to misinterpretation and high degree of variability. Therefore, in this work we have explored the viability of replacing subjective clinical information with deep learning-based objective features derived from wound images, pertaining to wound area and tissue amounts. These objective features were used to train prognostic models that quantified the risk of delayed wound healing, using a dataset consisting of 2.1 million wound evaluations derived from more than 200,000 wounds. The objective model, which was trained exclusively using image-based objective features, achieved at minimum a 5% and 9% improvement over PUSH and BWAT, respectively. Our best performing model, that used both subjective and objective features, achieved at minimum an 8% and 13% improvement over PUSH and BWAT, respectively. Moreover, the reported models consistently outperformed the standard tools across various clinical settings, wound etiologies, sexes, age groups and wound ages, thus establishing the generalizability of the models.


Assuntos
Exame Físico , Cicatrização , Humanos , Prognóstico , Índice de Gravidade de Doença
3.
JMIR Mhealth Uhealth ; 10(4): e36977, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451982

RESUMO

BACKGROUND: Composition of tissue types within a wound is a useful indicator of its healing progression. Tissue composition is clinically used in wound healing tools (eg, Bates-Jensen Wound Assessment Tool) to assess risk and recommend treatment. However, wound tissue identification and the estimation of their relative composition is highly subjective. Consequently, incorrect assessments could be reported, leading to downstream impacts including inappropriate dressing selection, failure to identify wounds at risk of not healing, or failure to make appropriate referrals to specialists. OBJECTIVE: This study aimed to measure inter- and intrarater variability in manual tissue segmentation and quantification among a cohort of wound care clinicians and determine if an objective assessment of tissue types (ie, size and amount) can be achieved using deep neural networks. METHODS: A data set of 58 anonymized wound images of various types of chronic wounds from Swift Medical's Wound Database was used to conduct the inter- and intrarater agreement study. The data set was split into 3 subsets with 50% overlap between subsets to measure intrarater agreement. In this study, 4 different tissue types (epithelial, granulation, slough, and eschar) within the wound bed were independently labeled by the 5 wound clinicians at 1-week intervals using a browser-based image annotation tool. In addition, 2 deep convolutional neural network architectures were developed for wound segmentation and tissue segmentation and were used in sequence in the workflow. These models were trained using 465,187 and 17,000 image-label pairs, respectively. This is the largest and most diverse reported data set used for training deep learning models for wound and wound tissue segmentation. The resulting models offer robust performance in diverse imaging conditions, are unbiased toward skin tones, and could execute in near real time on mobile devices. RESULTS: A poor to moderate interrater agreement in identifying tissue types in chronic wound images was reported. A very poor Krippendorff α value of .014 for interrater variability when identifying epithelization was observed, whereas granulation was most consistently identified by the clinicians. The intrarater intraclass correlation (3,1), however, indicates that raters were relatively consistent when labeling the same image multiple times over a period. Our deep learning models achieved a mean intersection over union of 0.8644 and 0.7192 for wound and tissue segmentation, respectively. A cohort of wound clinicians, by consensus, rated 91% (53/58) of the tissue segmentation results to be between fair and good in terms of tissue identification and segmentation quality. CONCLUSIONS: The interrater agreement study validates that clinicians exhibit considerable variability when identifying and visually estimating wound tissue proportion. The proposed deep learning technique provides objective tissue identification and measurements to assist clinicians in documenting the wound more accurately and could have a significant impact on wound care when deployed at scale.


Assuntos
Aprendizado Profundo , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa