Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930987

RESUMO

Peanut shells' adsorption performance in caffeine and triclosan removal was studied. Peanut shells were analyzed for their chemical composition, morphology, and surface functional groups. Batch adsorption and fixed-bed column experiments were carried out with solutions containing 30 mg/L of caffeine and triclosan. The parameters examined included peanut shell particle size (120-150, 300-600, and 800-2000 µm), adsorbent dose (0.02-60 g/L), contact time (up to 180 min), bed height (4-8 cm), and hydraulic loading rate (2.0 and 4.0 m3/m2-day). After determining the optimal adsorption conditions, kinetics, isotherm, and breakthrough curve models were applied to analyze the experimental data. Peanut shells showed an irregular surface and consisted mainly of polysaccharides (around 70% lignin, cellulose, and hemicellulose), with a specific surface area of 1.7 m2/g and a pore volume of 0.005 cm3/g. The highest removal efficiencies for caffeine (85.6 ± 1.4%) and triclosan (89.3 ± 1.5%) were achieved using the smallest particles and 10.0 and 0.1 g/L doses over 180 and 45 min, respectively. Triclosan showed easier removal compared to caffeine due to its higher lipophilic character. The pseudo-second-order kinetics model provided the best fit with the experimental data, suggesting a chemisorption process between caffeine/triclosan and the adsorbent. Equilibrium data were well-described by the Sips model, with maximum adsorption capacities of 3.3 mg/g and 289.3 mg/g for caffeine and triclosan, respectively. In fixed-bed column adsorption tests, particle size significantly influenced efficiency and hydraulic behavior, with 120-150 µm particles exhibiting the highest adsorption capacity for caffeine (0.72 mg/g) and triclosan (143.44 mg/g), albeit with clogging issues. The experimental data also showed good agreement with the Bohart-Adams, Thomas, and Yoon-Nelson models. Therefore, the findings of this study highlight not only the effective capability of peanut shells to remove caffeine and triclosan but also their versatility as a promising option for water treatment and sanitation applications in different contexts.


Assuntos
Arachis , Cafeína , Triclosan , Cafeína/química , Cafeína/isolamento & purificação , Triclosan/química , Triclosan/isolamento & purificação , Arachis/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Tamanho da Partícula , Purificação da Água/métodos
2.
Phys Chem Chem Phys ; 23(40): 22923-22935, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617940

RESUMO

The performance of fibrous membrane composites fabricated via electrospinning is strongly influenced by the solution's properties, process variables and ambient conditions, although a precise mechanism for controlling the properties of the resulting composite has remained elusive. In this work, we focus on the fabrication of electrospun poly(vinylpyrrolidone) (PVP) fibers, by varying both the polymer concentration and the mixture of ethanol (EtOH) and dimethylformamide (DMF) used as solvent. The impact of the solvent composition on the structural properties is assessed by a combined experimental and theoretical approach, employing scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheology, Fourier-transform infrared spectroscopy (FTIR) and stress-strain curves obtained from tensile tests to characterize the fibrous membranes produced, and density functional theory (DFT) calculations to explain the solvent's affect on PVP crystallization. We establish a morphological phase diagram, and propose a possible mechanism based on the measured fiber diameter distribution, the viscoelastic properties of the precursor solution, the correlation between the functional groups and the mechanical properties, the thermal transitions and the degree of crystallinity. We also employ DFT calculations to model the polymer coverage at equilibrium of a PVP polymer chain in the presence of EtOH/DMF solvent mixtures to corroborate the crucial role their O or -OH groups play in achieving high PVP coverages and promoting the stability of the resulting fiber. These findings will be valuable to researchers interested in predicting, modulating, and controlling both a fiber's morphology and its concomitant physico-chemical properties.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30929568

RESUMO

Conventional activated-sludge (AS) technologies are deficient for nutrient removal because they require specific floc characteristics. Therefore, the encapsulated AS with polyvinyl alcohol (PVA) will favor floc's formation that removes nutrients. The applied method was based on monitoring the removal of organic matter and nutrients (NH4+, NO3-, NO2-, PO43-) from synthetic domestic wastewater using laboratory-scale AS. The experimental reactors were operated at 8 h as optimized Hydraulic Retention Time (HRT). The sludge characteristics evaluation was carried out through the Sludge Volumetric Index (SVI), Food/Microorganism ratio (F/M), and Mixed Liquor Volatile Suspended Solids (MLVSS). Other specific floc characteristics, such as zeta potential and effective diameter were also evaluated. The results showed that the encapsulated AS with PVA favors nitrogen and phosphorous removal up to 35% but it did not improve organic matter removal. In addition, encapsulated AS with PVA has the characteristics of filamentous sludge (F/M: 0.7 g COD g-1 MLVSS d-1) with good settleability conditions (SVI: 43 mL g-1 MLSVS h-1) and low zeta potential (ZP: -0.9 mV), which favors its separation from the liquid phase. In conclusion, the encapsulation of AS with PVA improves nutrient removal by improving floc characteristics.


Assuntos
Nutrientes/isolamento & purificação , Álcool de Polivinil/farmacocinética , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Reatores Biológicos/microbiologia , Cidades , Composição de Medicamentos/métodos , Humanos , Nitrogênio/isolamento & purificação , Nitrogênio/farmacocinética , Fósforo/isolamento & purificação , Fósforo/farmacocinética , Álcool de Polivinil/química , Características de Residência , Purificação da Água/métodos
4.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000678

RESUMO

Agro-industrial residue valorization under the umbrella of the circular bioeconomy (CBE) has prompted the search for further forward-thinking alternatives that encourage the mitigation of the industry's environmental footprint. From this perspective, second-life valorization (viz., thermoplastic composites) has been explored for agro-industrial waste (viz., oil palm empty fruit bunch fibers, OPEFBFs) that has already been used previously in other circular applications (viz., the removal of domestic wastewater contaminants). Particularly, this ongoing study evaluated the performance of raw residues (R-OPEFBFs) within three different size ranges (250-425, 425-600, 600-800 µm) both before and after their utilization in biofiltration processes (as post-adsorbents, P-OPEFBFs) to reinforce a polymer matrix of acrylic resin. The research examined the changes in R-OPEFBF composition and morphology caused by microorganisms in the biofilters and their impact on the mechanical properties of the composites. Smaller R-OPEFBFs (250-425 µm) demonstrated superior mechanical performance. Additionally, the composites with P-OPEFBFs displayed significant enhancements in their mechanical properties (3.9-40.3%) compared to those with R-OPEFBFs. The combination of the three fiber sizes improved the mechanical behavior of the composites, indicating the potential for both R-OPEFBFs and P-OPEFBFs as reinforcement materials in composite applications.

5.
Polymers (Basel) ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36772005

RESUMO

Biological agents and their metabolic activity produce significant changes over the microstructure and properties of composites reinforced with natural fibers. In the present investigation, oil palm empty fruit bunch (OPEFB) fiber-reinforced acrylic thermoplastic composites were elaborated at three processing temperatures and subjected to water immersion, Prohesion cycle, and continuous salt-fog aging testing. After exposition, microbiological identification was accomplished in terms of fungal colonization. The characterization was complemented by weight loss, mechanical, infrared, and thermogravimetric analysis, as well as scanning electron microscopy. As a result of aging, fungal colonization was observed exclusively after continuous salt fog treatment, particularly by different species of Aspergillus spp. genus. Furthermore, salt spray promoted filamentous fungi growth producing hydrolyzing enzymes capable of degrading the cell walls of OPEFB fibers. In parallel, these fibers swelled due to humidity, which accelerated fungal growth, increased stress, and caused micro-cracks on the surface of composites. This produced the fragility of the composites, increasing Young's modulus, and decreasing both elongation at break and toughness. The infrared spectra showed changes in the intensity and appearance of bands associated with functional groups. Thermogravimetric results confirmed fungal action as the main cause of the deterioration.

6.
Materials (Basel) ; 15(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888481

RESUMO

In recent years, the use of oil palm wastes has been an interesting approach for the development of sustainable polymer matrix composites. Nevertheless, the water absorption behavior of these materials is one of the most critical factors for their performance over time. In this study, the water uptake characteristics of acrylic thermoplastic matrix composites reinforced separately with oil palm empty fruit bunch (OPEFB) and oil palm kernel shell (OPKS) were evaluated through immersion test in distilled water. The specimens of both composites were manufactured using the compression molding technique at three temperatures (80, 100, and 120 °C) using different particle sizes (425−600 and 600−850 µm). The composites, before and after the absorption test, were characterized by means of Fourier transform infrared spectroscopy, thermogravimetry, and scanning electron microscopy. The evaluation was complemented by the application of the Fickian diffusion model. Overall results showed that water absorption capacity decreased at a higher processing temperature and a larger particle size. In particular, it was observed that the type of reinforcement also influenced both water absorption and diffusivity. OPKS/acrylic and OPEFB/acrylic composites reached a maximum absorption of 77 and 86%, with diffusivities of 7.3 × 10−9 and 15.2 × 10−9 m2/min, respectively. Experimental evidence suggested that the absorption mechanism of the composites followed a non-Fickian model (n < 1.0).

7.
Data Brief ; 45: 108618, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426085

RESUMO

Natural fibers used as reinforcements or fillers for materials development greatly affect properties and performance of end-use applications. As a consequence of conditioning processes such as grinding and sieving, average fiber length varies significantly. It is thus necessary to estimate the length as statistical data distribution rather than a single mean value. This approach implies length measurement of a significant number of fibers; however, a very high number of data points requires not only long-time frames but also significative amount of work. To address these issues, this article details a facile methodology to measure the length of a large number of natural fibers of oil palm empty fruit bunch (OPEFB) together with a statistical analysis to verify the correspondence between theoretical distributions and experimental data. Moreover, further information related to spectrophotometric, physico-chemical, mechanical, thermal, and morphological characteristics of OPEFB fibers coming from oil palm cultivation in Ecuador are presented. The data will contribute to comprehensively and rigorously describe the overall effects of natural fiber lengths on material properties.

8.
Sci Total Environ ; 801: 149666, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34428664

RESUMO

The caffeine adsorptive performance and compatibility characteristics (Eisenia foetida Savigny) of rice husk, peanut shell, corn cob and coconut fiber were studied, aiming to assess the suitability of these residues for vermifilter beds. For this purpose, the agro-industrial residues were characterized and the E. foetida Savigny compatibility was determined by acute and chronic toxicity tests. Batch adsorption tests were performed using caffeine solutions. Optimal adsorption conditions, kinetic models, isotherm type and the influence of three particle sizes (120-150, 300-600, 800-2000 µm) in the caffeine removal were determined. Coconut fiber (120-150 µm) proved to be the most efficient residue for the caffeine removal (94.2%), requiring 4 g/L for 30 min. However, coconut fiber was the less compatible for earthworms (14d-LC50 = 82%). The results obtained allow to define adequate strategies, such as mixing highly adsorptive residues with the more compatible ones, to choose the most effective materials for vermifiltration technologies.


Assuntos
Oligoquetos , Adsorção , Animais , Cafeína , Cocos , Cinética
9.
Materials (Basel) ; 14(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922287

RESUMO

Contamination of water by heavy metals is a major environmental concern due to the potential ecological impact on human health and aquatic ecosystems. In this work, we studied the chemical modification of various fruit peels such as banana (BP), granadilla (GP), and orange ones (OP) in order to obtain novel bio-adsorbents to improve the removal of Zn(II) ions from 50 mg·L-1 synthetic aqueous solutions. For this purpose, sodium hydroxide and calcium acetate were employed to modify the fruit peels. The moisture, extractives, lignin, hemicellulose, and cellulose contents of the raw materials were determined according to ASTM standards. The obtained bio-adsorbents were characterized by scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). The results showed the OP bio-adsorbents performed better, especially when the concentration of the modifier solutions increased, e.g., the OP particles modified using 0.8 M NaOH and Ca(CH3COO)2 solutions resulted in 97% removal of Zn(II) contaminating ions and reached a maximum adsorption capacity of 27.5 mg Zn per gram of bio-adsorbent. The adsorption processes were found to follow a pseudo-second order model. The error function sum of square error indicated the Freundlich isotherm (non-linear regression) as best fit model. The obtained results are particularly interesting for material selection in wastewater treatment technologies based on contaminant adsorption.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa