Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072090

RESUMO

Hydrogels obtained from combining different polymers are an interesting strategy for developing controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using a different concentration of the components. The hydrogels were characterized by Fourier transform-infrared spectroscopy, scanning electron microscopy, and a swelling degree. Betamethasone release as well as the in vitro cytocompatibility with chondrocytes and fibroblast cells were also evaluated. Scanning electron microscopy confirmed the porous surface morphology of the hydrogels in all cases. The swelling percent was determined at a different pH and was observed to be pH-sensitive. The controlled release behavior of betamethasone from the matrices was investigated in PBS media (pH = 7.4) and the drug was released in a controlled manner for up to 8 h. Human chondrocytes and fibroblasts were cultured on the hydrogels. The MTS assay showed that almost all hydrogels are cytocompatibles and an increase of proliferation in both cell types after one week of incubation was observed by the Live/Dead® assay. These results demonstrate that these hydrogels are attractive materials for pharmaceutical and biomedical applications due to their characteristics, their release kinetics, and biocompatibility.


Assuntos
Alginatos/química , Betametasona/administração & dosagem , Portadores de Fármacos , Hidrogéis/química , Metacrilatos/química , Polímeros/química , Alicerces Teciduais/química , Animais , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Condrócitos , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Hidrogéis/síntese química , Cinética , Camundongos , Estrutura Molecular , Análise Espectral
2.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071673

RESUMO

Calcium phosphate cements have the advantage that they can be prepared as a paste that sets in a few minutes and can be easily adapted to the shape of the bone defect, which facilitates its clinical application. In this research, six formulations of brushite (dicalcium phosphate dihydrated) cement were obtained and the effect of the addition of sodium alginate was analyzed, such as its capacity as a tetracycline release system. The samples that contain sodium alginate set in 4 or 5 min and showed a high percentage of injectability (93%). The cements exhibit compression resistance values between 1.6 and 2.6 MPa. The drug was released in a range between 12.6 and 13.2% after 7 days. The antimicrobial activity of all the cements containing antibiotics was proven. All samples reached values of cell viability above 70 percent. We also observed that the addition of the sodium alginate and tetracycline improved the cell viability.


Assuntos
Alginatos/química , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Tetraciclina/farmacologia , Células 3T3-L1 , Animais , Antibacterianos/química , Materiais Biocompatíveis/química , Regeneração Óssea , Proliferação de Células , Sobrevivência Celular , Força Compressiva , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pressão , Estresse Mecânico , Tetraciclina/química , Fatores de Tempo , Engenharia Tecidual , Difração de Raios X
3.
Gels ; 8(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35049579

RESUMO

Intra-articular administration of anti-inflammatory drugs is a strategy that allows localized action on damaged articular cartilage and reduces the side effects associated with systemic drug administration. The objective of this work is to prepare injectable thermosensitive hydrogels for the long-term application of dexamethasone. The hydrogels were prepared by mixing chitosan (CS) and Pluronic-F127 (PF) physically. In addition, tripolyphosphate (TPP) was used as a crosslinking agent. Chitosan added to the mix increased the gel time compared to the pluronic gel alone. The incorporation of TPP into the material modified the morphology of the hydrogels formed. Subsequently, MTS and Live/Dead® experiments were performed to investigate the toxicity of hydrogels against human chondrocytes. The in vitro releases of dexamethasone (DMT) from CS-PF and CS-PF-TPP gels had an initial burst and took more time than that from the PF hydrogel. In vivo studies showed that hydrogels retained the fluorescent compound longer in the joint than when administered in PBS alone. These results suggest that the CS-PF and CS-PF-TPP hydrogels loaded with DMT could be a promising drug delivery platform for the treatment of osteoarthritis.

4.
Gels ; 8(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36005089

RESUMO

The intra-articular administration of drugs has attracted great interest in recent decades for the treatment of osteoarthritis. The use of modified drugs has also attracted interest in recent years because their intra-articular administration has demonstrated encouraging results. The objective of this work was to prepare injectable-thermosensitive hydrogels for the intra-articular administration of Etanercept (ETA), an inhibitor of tumor necrosis factor-α. Hydrogels were prepared from the physical mixture of chitosan and Pluronic F127 with ß-glycerolphosphate (BGP). Adding ß-glycerolphosphate to the system reduced the gelation time and also modified the morphology of the resulting material. In vitro studies were carried out to determine the cytocompatibility of the prepared hydrogels for the human chondrocyte line C28/I2. The in vitro release study showed that the incorporation of BGP into the system markedly modified the release of ETA. In the in vivo studies, it was verified that the hydrogels remained inside the implantation site in the joint until the end of the study. Furthermore, ETA was highly concentrated in the blood of the study mice 48 h after the loaded material was injected. Histological investigation of osteoarthritic knees showed that the material promotes cartilage recovery in osteoarthritic mice. The results demonstrate the potential of ETA-loaded injectable hydrogels for the localized treatment of joints.

5.
Pharmaceutics ; 14(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35214015

RESUMO

Cartilage diseases currently affect a high percentage of the world's population. Almost all of these diseases, such as osteoarthritis (OA), cause inflammation of this soft tissue. However, this could be controlled with biomaterials that act as an anti-inflammatory delivery system, capable of dosing these drugs over time in a specific area. The objective of this study was to incorporate etanercept (ETA) into porous three-layer scaffolds to decrease the inflammatory process in this soft tissue. ETA is a blocker of pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). For this reason, the scaffold was built based on natural polymers, including chitosan and type I collagen. The scaffold was grafted next to subchondral bone using hydroxyapatite as filler. One of the biomaterials obtained was also crosslinked to compare its mechanical properties with the non-treated one. Both samples' physicochemical properties were studied with SEM, micro-CT and photoacoustic imaging, and their rheological properties were also compared. The cell viability and proliferation of the human chondrocyte C28/I2 cell line were studied in vitro. An in vitro and in vivo controlled release study was evaluated in both specimens. The ETA anti-inflammatory effect was also studied by in vitro TNF-α and IL-6 production. The crosslinked and non-treated scaffolds had rheological properties suitable for this application. They were non-cytotoxic and favoured the in vitro growth of chondrocytes. The in vitro and in vivo ETA release showed desirable results for a drug delivery system. The TNF-α and IL-6 production assay showed that this drug was effective as an anti-inflammatory agent. In an in vivo OA mice model, safranin-O and fast green staining was carried out. The OA cartilage tissue improved when the scaffold with ETA was grafted in the damaged area. These results demonstrate that this type of biomaterial has high potential for clinical applications in tissue engineering and as a controlled drug delivery system in OA articular cartilage.

6.
Polymers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809430

RESUMO

Polymer-based tri-layered (bone, intermediate and top layers) scaffolds used for the restoration of articular cartilage were prepared and characterized in this study to emulate the concentration gradient of cartilage. The scaffolds were physically or chemically crosslinked. In order to obtain adequate scaffolds for the intended application, the impact of the type of calcium phosphate used in the bone layer, the polymer used in the intermediate layer and the interlayer crosslinking process were analyzed. The correlation among SEM micrographs, physical-chemical characterization, swelling behavior, rheological measurements and cell studies were examined. Storage moduli at 1 Hz were 0.3-1.7 kPa for physically crosslinked scaffolds, and 4-5 kPa (EDC/NHS system) and 15-20 kPa (glutaraldehyde) for chemically crosslinked scaffolds. Intrinsic viscoelasticity and poroelasticity were considered in discussing the physical mechanism dominating in different time/frequency scales. Cell evaluation showed that all samples are available as alternatives to repair and/or substitute cartilage in articular osteoarthritis.

7.
J Tissue Eng Regen Med ; 14(2): 355-368, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826327

RESUMO

Various tissue engineering systems for cartilage repair have been designed and tested over the past two decades, leading to the development of many promising cartilage grafts. However, no one has yet succeeded in devising an optimal system to restore damaged articular cartilage. Here, the design, assembly, and biological testing of a porous, chitosan/collagen-based scaffold as an implant to repair damaged articular cartilage is reported. Its gradient composition and trilayer structure mimic variations in natural cartilage tissue. One of its layers includes hydroxyapatite, a bioactive component that facilitates the integration of growing tissue on local bone in the target area after scaffold implantation. The scaffold was evaluated for surface morphology; rheological performance (storage, loss, complex, and time-relaxation moduli at 1 kHz); physiological stability; in vitro activity and cytotoxicity (on a human chondrocyte C28 cell line); and in vivo performance (tissue growth and biodegradability), in a murine model of osteoarthritis. The scaffold was shown to be mechanically resistant and noncytotoxic, favored tissue growth in vivo, and remained stable for 35 days postimplantation in mice. These encouraging results highlight the potential of this porous chitosan/collagen scaffold for clinical applications in cartilage tissue engineering.


Assuntos
Cartilagem Articular/cirurgia , Osteoartrite/cirurgia , Porosidade , Próteses e Implantes , Desenho de Prótese/métodos , Engenharia Tecidual/métodos , Animais , Cartilagem Articular/patologia , Sobrevivência Celular , Quitosana/química , Condrócitos/citologia , Humanos , Hidroxiapatitas/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Varredura , Polímeros/química , Reologia , Alicerces Teciduais , Microtomografia por Raio-X
8.
Curr Pharm Des ; 25(17): 1915-1932, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31298149

RESUMO

Articular cartilage is a connective tissue structure that is found in anatomical areas that are important for the movement of the human body. Osteoarthritis is the ailment that most often affects the articular cartilage. Due to its poor intrinsic healing capacity, damage to the articular cartilage is highly detrimental and at present the reconstructive options for its repair are limited. Tissue engineering and the science of nanobiomaterials are two lines of research that together can contribute to the restoration of damaged tissue. The science of nanobiomaterials focuses on the development of different nanoscale structures that can be used as carriers of drugs / cells to treat and repair damaged tissues such as articular cartilage. This review article is an overview of the composition of articular cartilage, the causes and treatments of osteoarthritis, with a special emphasis on nanomaterials as carriers of drugs and cells, which reduce inflammation, promote the activation of biochemical factors and ultimately contribute to the total restoration of articular cartilage.


Assuntos
Cartilagem Articular , Nanoestruturas , Osteoartrite/terapia , Engenharia Tecidual , Humanos , Polímeros
9.
Tissue Eng Part B Rev ; 25(4): 357-373, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30913997

RESUMO

Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. First, we describe the molecular, cellular, and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix, and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype. Next, we discuss the diverse compounds and designs used for these scaffolds, including natural and synthetic biomaterials and porous, fibrous, and multilayer architectures. We then report on the mechanical properties of different cell-loaded scaffolds, and the success of these scaffolds following in vivo implantation in small animals, in terms of generating tissue that structurally and functionally resembles native tissue. Last, we highlight future trends in this field. We conclude that despite major technical advances made over the past 15 years, and continually improving results in cartilage repair experiments in animals, the development of clinically useful implants for regeneration of articular cartilage remains a challenge


Assuntos
Materiais Biocompatíveis/química , Cartilagem Articular/fisiologia , Condrócitos/citologia , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cartilagem Articular/lesões , Matriz Extracelular , Humanos , Cicatrização
10.
J Biomed Mater Res A ; 80(2): 351-61, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17001653

RESUMO

One of the main challenges in the investigation on calcium phosphate cements (CPC) lies in the introduction of macroporosity, without loosing the self-setting ability and injectability, characteristic of the cement-type materials. The benefits of macroporosity are related to the enhancement of bone regeneration mechanisms, such as angiogenesis and tissue ingrowth. In this work, the feasibility to obtain self-setting injectable macroporous hydroxyapatite foams by the incorporation of a protein-based foaming agent to a CPC is demonstrated. Albumen is combined with an alpha-tricalcium phosphate [Ca3(PO4)2, alpha-TCP] paste, which hydrolyzes to a calcium deficient hydroxyapatite during the setting reaction. A systematic study is presented, where the effect of different processing parameters is analyzed in terms of porosity, setting properties, injectability, and compressive strength. Self-setting foams with porosities up to 70%, which maintain their porous structure after injection, are obtained. These injectable foams can be used both for direct in vivo applications and for the fabrication of low temperature tissue engineering scaffolds.


Assuntos
Cimentos Ósseos/síntese química , Fosfatos de Cálcio/química , Albuminas , Cimentos Ósseos/química , Durapatita , Injeções , Osteogênese , Porosidade , Engenharia Tecidual/métodos
11.
J Biomed Mater Res B Appl Biomater ; 103(1): 72-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24764271

RESUMO

Biocompatibility, injectability and in situ self-setting are characteristics of calcium phosphate cements which make them promising materials for a wide range of clinical applications in traumatology and maxillo-facial surgery. One of the main disadvantages is their relatively low strength which restricts their use to nonload-bearing applications. α-Tricalcium phosphate (α-C3P) cement sets into calcium-deficient hydroxyapatite (CDHA), which is biocompatible and plays an essential role in the formation, growth and maintenance of tissue-biomaterial interface. ß-Dicalcium silicate (ß-C2S) and tricalcium aluminate (C3A) are Portland cement components, these compounds react with water to form hydrated phases that enhance mechanical strength of the end products. In this study, setting time, compressive strength (CS) and in vitro bioactivity and biocompatibility were evaluated to determine the influence of addition of ß-C2S and C3A to α-C3P-based cement. X-ray diffraction and scanning electron microscopy were used to investigate phase composition and morphological changes in cement samples. Addition of C3A resulted in cements having suitable setting times, but low CS, only partial conversion into CDHA and cytotoxicity. However, addition of ß-C2S delayed the setting times but promoted total conversion into CDHA by soaking in simulated body fluid and strengthened the set cement over the limit strength of cancellous bone. The best properties were obtained for cement added with 10 wt % of ß-C2S, which showed in vitro bioactivity and cytocompatibility, making it a suitable candidate as bone substitute.


Assuntos
Compostos de Alumínio/química , Cimentos Ósseos/química , Compostos de Cálcio/química , Fosfatos de Cálcio/química , Osteoblastos/metabolismo , Silicatos/química , Linhagem Celular , Sobrevivência Celular , Humanos , Teste de Materiais , Osteoblastos/citologia
12.
J Biomed Mater Res A ; 102(10): 3693-703, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24277585

RESUMO

ß-dicalcium silicate (ß-Ca2 SiO4, ß-C2 S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, ß-C2 S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of ß-C2 S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control.


Assuntos
Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/síntese química , Cimentos Ósseos/farmacologia , Compostos de Cálcio/química , Teste de Materiais/métodos , Silicatos/química , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Tamanho da Partícula , Pós , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo , Difração de Raios X
13.
J Biomed Mater Res A ; 101(12): 3607-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23982885

RESUMO

Copolymeric composites of acrylamide (AA) and 2,3-epoxypropyl methacrylate (EPMA) with hydroxyapatite (HA) load were studied. Swelling studies reports an anomalous or non-Fickian behavior following a good fitting to a pseudo second order mathematical treatment (α = 0.05, p < 0.0001). The composites showed a strong dependence on pH, related with the variations in the swelling behavior. The addition of load induces a diminution of swelling capacity and an increase of diametric tensile strength (DTS) ranging between 20 and 90 kPa. The calorimetric experiments showed two steps at 78°C and 255°C assigned to water loss and samples Tg. The drug control released was adjusted to a two-term equation obtaining a diffusion coefficient around 10(-5) cm(2) /s. The samples showed a significant bioactivity in vitro and it was certified by SEM, EDS and surface area calculus.


Assuntos
Acrilamida/química , Durapatita/química , Compostos de Epóxi/química , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Varredura Diferencial de Calorimetria , Cefazolina/química , Cefazolina/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Cinética , Microscopia Eletrônica de Varredura , Temperatura , Resistência à Tração/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa