RESUMO
Cobblestone lissencephaly (COB) is a severe brain malformation in which overmigration of neurons and glial cells into the arachnoid space results in the formation of cortical dysplasia. COB occurs in a wide range of genetic disorders known as dystroglycanopathies, which are congenital muscular dystrophies associated with brain and eye anomalies and range from Walker-Warburg syndrome to Fukuyama congenital muscular dystrophy. Each of these conditions has been associated with alpha-dystroglycan defects or with mutations in genes encoding basement membrane components, which are known to interact with alpha-dystroglycan. Our screening of a cohort of 25 families with recessive forms of COB identified six families affected by biallelic mutations in TMTC3 (encoding transmembrane and tetratricopeptide repeat containing 3), a gene without obvious functional connections to alpha-dystroglycan. Most affected individuals showed brainstem and cerebellum hypoplasia, as well as ventriculomegaly. However, the minority of the affected individuals had eye defects or elevated muscle creatine phosphokinase, separating the TMTC3 COB phenotype from typical congenital muscular dystrophies. Our data suggest that loss of TMTC3 causes COB with minimal eye or muscle involvement.
Assuntos
Alelos , Proteínas de Transporte/genética , Lissencefalia Cobblestone/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos , Membrana Basal/metabolismo , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Proteínas de Transporte/metabolismo , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Lissencefalia Cobblestone/diagnóstico por imagem , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Distroglicanas/metabolismo , Anormalidades do Olho/diagnóstico por imagem , Anormalidades do Olho/genética , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Mutação , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Neuroglia/metabolismo , Neurônios/patologia , Linhagem , FenótipoRESUMO
BACKGROUND: Neuroanatomical defects are often present in children with severe developmental delay and intellectual disabilities. Few genetic loci have been associated with disorders of neurodevelopment. Our objective of the present study was to analyse a consanguineous Arab family showing some of the hallmark signs of a rare cerebellar hypoplasia-related neurodevelopmental syndrome as a strategy for discovering a causative genetic mutation. METHODS: We used whole exome sequencing to identify the causative mutation in two female siblings of a consanguineous Arab family showing some of the hallmark signs of a cerebellar-hypoplasia-related neurodevelopmental disorder. Direct Sanger sequencing was used to validate the candidate mutations that cosegregated with the phenotype. Gene expression and loss of function studies were carried out in the zebrafish model system to examine the role of the candidate gene in neurodevelopment. RESULTS: Patients presented with severe global developmental delay, intellectual disability, hypoplasia of the cerebellum and biochemical findings suggestive of nephrotic disease. Whole exome sequencing of the two patients revealed a shared nonsense homozygous variant in WDR73 (p.Q235X (c.703C>T)) resulting in loss of the last 144 amino acids of the protein. The variant segregated according to a recessive mode of inheritance in this family and was absent from public and our inhouse databases. We examined the developmental role of WDR73 using a loss-of-function paradigm in zebrafish. There was a significant brain growth and morphogenesis defect in wdr73 knockdown embryos resulting in a poorly differentiated midbrain and cerebellum. CONCLUSIONS: The results provide new insight into the functional role of WDR73 in brain development and show that perturbation of its function in an inherited disorder in humans is associated with cerebellar hypoplasia as well as nephrotic disease, consistent with Galloway-Mowat Syndrome.
Assuntos
Códon sem Sentido , Estudos de Associação Genética , Hérnia Hiatal/genética , Microcefalia/genética , Nefrose/genética , Proteínas/genética , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Cerebelo/patologia , Biologia Computacional , Consanguinidade , Bases de Dados de Ácidos Nucleicos , Exoma , Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Hérnia Hiatal/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Microcefalia/diagnóstico , Nefrose/diagnóstico , Neurogênese/genética , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Peixe-ZebraRESUMO
Sotos syndrome, characterized by intellectual disability and characteristic facial features, is caused by haploinsufficiency in the NSD1 gene. We conducted an etiological study on two siblings with Sotos features without mutations in NSD1 and detected a homozygous frameshift mutation in the APC2 gene by whole-exome sequencing, which resulted in the loss of function of cytoskeletal regulation in neurons. Apc2-deficient (Apc2-/-) mice exhibited impaired learning and memory abilities along with an abnormal head shape. Endogenous Apc2 expression was downregulated by the knockdown of Nsd1, indicating that APC2 is a downstream effector of NSD1 in neurons. Nsd1 knockdown in embryonic mouse brains impaired the migration and laminar positioning of cortical neurons, as observed in Apc2-/- mice, and this defect was rescued by the forced expression of Apc2. Thus, APC2 is a crucial target of NSD1, which provides an explanation for the intellectual disability associated with Sotos syndrome.