Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cell ; 175(6): 1651-1664.e14, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30392956

RESUMO

The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1ß (IL-1ß)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.


Assuntos
Imunidade Inata , Inflamassomos/imunologia , Lipopolissacarídeos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptores de Superfície Celular/imunologia , Ácidos Teicoicos/imunologia , Animais , Caspase 1/genética , Caspase 1/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Listeriose/genética , Listeriose/patologia , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genética
2.
Nat Immunol ; 11(5): 385-93, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20351693

RESUMO

Francisella tularensis, the causative agent of tularemia, infects host macrophages, which triggers production of the proinflammatory cytokines interleukin 1beta (IL-1beta) and IL-18. We elucidate here how host macrophages recognize F. tularensis and elicit this proinflammatory response. Using mice deficient in the DNA-sensing inflammasome component AIM2, we demonstrate here that AIM2 is required for sensing F. tularensis. AIM2-deficient mice were extremely susceptible to F. tularensis infection, with greater mortality and bacterial burden than that of wild-type mice. Caspase-1 activation, IL-1beta secretion and cell death were absent in Aim2(-/-) macrophages in response to F. tularensis infection or the presence of cytoplasmic DNA. Our study identifies AIM2 as a crucial sensor of F. tularensis infection and provides genetic proof of its critical role in host innate immunity to intracellular pathogens.


Assuntos
Francisella tularensis/imunologia , Imunidade Inata , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Tularemia/imunologia , Animais , Sinalização do Cálcio/imunologia , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA , Francisella tularensis/patogenicidade , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Interleucina-1beta/imunologia , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/imunologia , L-Lactato Desidrogenase/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Proteínas Nucleares/genética , Multimerização Proteica , Tularemia/genética , Tularemia/metabolismo
3.
J Biol Chem ; 295(14): 4661-4672, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094226

RESUMO

The necrosome is a protein complex required for signaling in cells that results in necroptosis, which is also dependent on tumor necrosis factor receptor (TNF-R) signaling. TNFα promotes necroptosis, and its expression is facilitated by mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2) but is inhibited by the RNA-binding protein tristetraprolin (TTP, encoded by the Zfp36 gene). We have stimulated murine macrophages from WT, MyD88-/-, Trif-/-, MyD88-/-Trif-/-, MK2-/-, and Zfp36-/- mice with graded doses of lipopolysaccharide (LPS) and various inhibitors to evaluate the role of various genes in Toll-like receptor 4 (TLR4)-induced necroptosis. Necrosome signaling, cytokine production, and cell death were evaluated by immunoblotting, ELISA, and cell death assays, respectively. We observed that during TLR4 signaling, necrosome activation is mediated through the adaptor proteins MyD88 and TRIF, and this is inhibited by MK2. In the absence of MK2-mediated necrosome activation, lipopolysaccharide-induced TNFα expression was drastically reduced, but MK2-deficient cells became highly sensitive to necroptosis even at low TNFα levels. In contrast, during tonic TLR4 signaling, WT cells did not undergo necroptosis, even when MK2 was disabled. Of note, necroptosis occurred only in the absence of TTP and was mediated by the expression of TNFα and activation of JUN N-terminal kinase (JNK). These results reveal that TTP plays an important role in inhibiting TNFα/JNK-induced necrosome signaling and resultant cytotoxicity.


Assuntos
Necroptose , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Tristetraprolina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Caspase 8/química , Caspase 8/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Necroptose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tristetraprolina/deficiência , Tristetraprolina/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Yale J Biol Med ; 92(4): 603-617, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31866776

RESUMO

Apoptosis is a form of programmed cell death (PCD) that plays critical physiological roles in removing superfluous or dangerous cell populations that are unneeded or threatening to the health of the host organism. Although the molecular pathways leading to activation of the apoptotic program have been extensively studied and characterized starting in the 1970s, new evidence suggests that members of the gasdermin superfamily are novel pore-forming proteins that augment apoptosis by permeabilizing the mitochondria and participate in the final stages of the apoptotic program by inducing secondary necrosis/pyroptosis. These findings may explain outstanding questions in the field such as why certain gasdermin members sensitize cells to apoptosis, and why some apoptotic cells also show morphological features of necrosis. Furthermore, the interplay between the gasdermins and apoptosis may also explain why genetic and epigenetic alterations in these genes cause diseases and disorders like cancer and hearing loss. This review focuses on our current understanding of the function of several gasdermin superfamily members, their role in apoptosis, and how they may contribute to pathophysiological conditions.


Assuntos
Apoptose , Proteínas de Neoplasias/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação/genética , Proteínas de Neoplasias/genética , Transdução de Sinais
5.
PLoS Pathog ; 12(12): e1006035, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27911947

RESUMO

Type III secretion systems (T3SS) are central virulence factors for many pathogenic Gram-negative bacteria, and secreted T3SS effectors can block key aspects of host cell signaling. To counter this, innate immune responses can also sense some T3SS components to initiate anti-bacterial mechanisms. The Yersinia pestis T3SS is particularly effective and sophisticated in manipulating the production of pro-inflammatory cytokines IL-1ß and IL-18, which are typically processed into their mature forms by active caspase-1 following inflammasome formation. Some effectors, like Y. pestis YopM, may block inflammasome activation. Here we show that YopM prevents Y. pestis induced activation of the Pyrin inflammasome induced by the RhoA-inhibiting effector YopE, which is a GTPase activating protein. YopM blocks YopE-induced Pyrin-mediated caspase-1 dependent IL-1ß/IL-18 production and cell death. We also detected YopM in a complex with Pyrin and kinases RSK1 and PKN1, putative negative regulators of Pyrin. In contrast to wild-type mice, Pyrin deficient mice were also highly susceptible to an attenuated Y. pestis strain lacking YopM, emphasizing the importance of inhibition of Pyrin in vivo. A complex interplay between the Y. pestis T3SS and IL-1ß/IL-18 production is evident, involving at least four inflammasome pathways. The secreted effector YopJ triggers caspase-8- dependent IL-1ß activation, even when YopM is present. Additionally, the presence of the T3SS needle/translocon activates NLRP3 and NLRC4-dependent IL-1ß generation, which is blocked by YopK, but not by YopM. Taken together, the data suggest YopM specificity for obstructing the Pyrin pathway, as the effector does not appear to block Y. pestis-induced NLRP3, NLRC4 or caspase-8 dependent caspase-1 processing. Thus, we identify Y. pestis YopM as a microbial inhibitor of the Pyrin inflammasome. The fact that so many of the Y. pestis T3SS components are participating in regulation of IL-1ß/IL-18 release suggests that these effects are essential for maximal control of innate immunity during plague.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Inflamassomos/imunologia , Peste/imunologia , Pirina/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Yersinia pestis/imunologia
6.
J Immunol ; 192(8): 3881-8, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24623131

RESUMO

Caspase-1 activation is a central event in innate immune responses to many pathogenic infections and tissue damage. The NLRP3 inflammasome, a multiprotein scaffolding complex that assembles in response to two distinct steps, priming and activation, is required for caspase-1 activation. However, the detailed mechanisms of these steps remain poorly characterized. To investigate the process of LPS-mediated NLRP3 inflammasome priming, we used constitutively present pro-IL-18 as the caspase-1-specific substrate to allow study of the early events. We analyzed human monocyte caspase-1 activity in response to LPS priming, followed by activation with ATP. Within minutes of endotoxin priming, the NLRP3 inflammasome is licensed for ATP-induced release of processed IL-18, apoptosis-associated speck-forming complex containing CARD, and active caspase-1, independent of new mRNA or protein synthesis. Moreover, extracellular signal-regulated kinase 1 (ERK1) phosphorylation is central to the priming process. ERK inhibition and small interfering RNA-mediated ERK1 knockdown profoundly impair priming. In addition, proteasome inhibition prevents ERK phosphorylation and blocks priming. Scavenging reactive oxygen species with diphenylene iodonium also blocks both priming and ERK phosphorylation. These findings suggest that ERK1-mediated posttranslational modifications license the NLRP3 inflammasome to respond to the second signal ATP by inducing posttranslational events that are independent of new production of pro-IL-1ß and NOD-like receptor components.


Assuntos
Inflamassomos , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Monócitos/imunologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oxidantes/farmacologia , Inibidores de Proteínas Quinases/farmacologia
7.
Biochim Biophys Acta ; 1843(7): 1295-307, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24709290

RESUMO

Omi/HtrA2 is a nuclear encoded mitochondrial serine protease with dual and opposite functions that depend entirely on its subcellular localization. During apoptosis, Omi/HtrA2 is released into the cytoplasm where it participates in cell death. While confined in the inter-membrane space of the mitochondria, Omi/HtrA2 has a pro-survival function that may involve the regulation of protein quality control (PQC) and mitochondrial homeostasis. Loss of Omi/HtrA2's protease activity causes the neuromuscular disorder of the mnd2 (motor neuron degeneration 2) mutant mice. These mice develop multiple defects including neurodegeneration with parkinsonian features. Loss of Omi/HtrA2 in non-neuronal tissues has also been shown to cause premature aging. The normal function of Omi/HtrA2 in the mitochondria and how its deregulation causes neurodegeneration or premature aging are unknown. Here we report that the mitochondrial Mulan E3 ubiquitin ligase is a specific substrate of Omi/HtrA2. During exposure to H(2)O(2), Omi/HtrA2 degrades Mulan, and this regulation is lost in cells that carry the inactive protease. Furthermore, we show accumulation of Mulan protein in various tissues of mnd2 mice as well as in Omi/HtrA2(-/-) mouse embryonic fibroblasts (MEFs). This causes a significant decrease of mitofusin 2 (Mfn2) protein, and increased mitophagy. Our work describes a new stress-signaling pathway that is initiated in the mitochondria and involves the regulation of Mulan by Omi/HtrA2 protease. Deregulation of this pathway, as it occurs in mnd2 mutant mice, causes mitochondrial dysfunction and mitophagy, and could be responsible for the motor neuron disease and the premature aging phenotype observed in these animals.


Assuntos
Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mitofagia/genética , Serina Endopeptidases/genética , Ubiquitina-Proteína Ligases/genética , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Apoptose , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fibroblastos/patologia , GTP Fosfo-Hidrolases/deficiência , Regulação da Expressão Gênica , Células HEK293 , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Proteínas Mitocondriais/deficiência , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Estresse Oxidativo , Transporte Proteico , Serina Endopeptidases/deficiência , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
8.
Immunol Cell Biol ; 93(6): 591-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25601272

RESUMO

Th2 cytokine IL-4 has been previously shown to suppress the production of proinflammatory cytokines in monocytes. However, the underlying molecular mechanism by which IL-4 signaling antagonizes proinflammatory responses is poorly characterized. In particular, whether IL-4 can modulate inflammasome signaling remains unknown. Here, we provide evidence that IL-4 suppresses NLRP3-dependent caspase-1 activation and the subsequent IL-1ß secretion but does not inhibit absent in melanoma 2 (AIM2)- or NLRC4 (NOD-like receptor family, CARD domain-containing 4)-dependent caspase-1 activation in THP-1 and mouse bone marrow-derived macrophages. Upon lipopolysaccharide (LPS) or LPS/ATP stimulation, IL-4 markedly inhibited the assembly of NLRP3 inflammasome, including NLRP3-dependent ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) oligomerization, NLRP3-ASC interaction and NLRP3 speck-like oligomeric structure formation. The negative regulation of NLRP3 inflammasome by IL-4 was not due to the impaired mRNA or protein production of NLRP3 and proinflammatory cytokines. Supporting this observation, IL-4 attenuated NLRP3 inflammasome activation even in reconstituted NLRP3-expressing macrophages in which NLRP3 expression is not transcriptionally regulated by TLR-NF-κB signaling. Furthermore, the IL-4-mediated suppression of NLRP3 inflammasome was independent of STAT6-dependent transcription and mitochondrial reactive oxygen species (ROS). Instead, IL-4 inhibited subcellular redistribution of NLRP3 into mitochondria and microtubule polymerization upon NLRP3-activating stimulation. Our results collectively suggest that IL-4 could suppress NLRP3 inflammasome activation in a transcription-independent manner, thus providing an endogenous regulatory machinery to prevent excessive inflammasome activation.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Interleucina-4/metabolismo , Transdução de Sinais , Animais , Caspase 1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-4/farmacologia , Espaço Intracelular , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ligação Proteica , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
9.
J Immunol ; 191(8): 3995-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24043892

RESUMO

Activation of the NLRP3 inflammasome by diverse stimuli requires a priming signal from TLRs and an activation signal from purinergic receptors or pore-forming toxins. In this study, we demonstrate, through detailed analysis of NLRP3 activation in macrophages deficient in key downstream TLR signaling molecules, that MyD88 is required for an immediate early phase, whereas Toll/IL-1R domain-containing adapter inducing IFN-ß is required for a subsequent intermediate phase of posttranslational NLRP3 activation. Both IL-1R-associated kinase (IRAK) 1 and IRAK4 are critical for rapid activation of NLRP3 through the MyD88 pathway, but only IRAK1 is partially required in the Toll/IL-1R domain-containing adapter inducing IFN-ß pathway. IRAK1 and IRAK4 are also required for rapid activation of NLRP3 by Listeria monocytogenes, as deletion of IRAK1 or IRAK4 led to defective inflammasome activation. These findings define the pathways that lead to rapid NLRP3 activation and identify IRAK1 as a critical mediator of a transcription-independent,inflammasome-dependent early warning response to pathogenic infection.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos , Quinases Associadas a Receptores de Interleucina-1/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Ativação Enzimática , Interferon beta/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/metabolismo , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
10.
J Immunol ; 191(8): 4358-66, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24048902

RESUMO

NLRP3 assembles an inflammasome complex that activates caspase-1 upon sensing various danger signals derived from pathogenic infection, tissue damage, and environmental toxins. How NLRP3 senses these various stimuli is still poorly understood, but mitochondria and mitochondrial reactive oxygen species have been proposed to play a critical role in NLRP3 activation. In this article, we provide evidence that the mitochondrial antiviral signaling protein MAVS associates with NLRP3 and facilitates its oligomerization leading to caspase-1 activation. In reconstituted 293T cells, full-length MAVS promoted NLRP3-dependent caspase-1 activation, whereas a C-terminal transmembrane domain-truncated mutant of MAVS (MAVS-ΔTM) did not. MAVS, but not MAVS-ΔTM, interacted with NLRP3 and triggered the oligomerization of NLRP3, suggesting that mitochondrial localization of MAVS and intact MAVS signaling are essential for activating the NLRP3 inflammasome. Supporting this, activation of MAVS signaling by Sendai virus infection promoted NLRP3-dependent caspase-1 activation, whereas knocking down MAVS expression clearly attenuated the activation of NLRP3 inflammasome by Sendai virus in THP-1 and mouse macrophages. Taken together, our results suggest that MAVS facilitates the recruitment of NLRP3 to the mitochondria and may enhance its oligomerization and activation by bringing it in close proximity to mitochondrial reactive oxygen species.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Macrófagos/imunologia , Mitocôndrias/metabolismo , Infecções por Respirovirus/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Caspase 1/metabolismo , Linhagem Celular , Ativação Enzimática , Células HEK293 , Humanos , Inflamassomos/imunologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Vírus Sendai/imunologia , Transdução de Sinais/imunologia
11.
Nature ; 458(7237): 509-13, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19158676

RESUMO

Host- and pathogen-associated cytoplasmic double-stranded DNA triggers the activation of a NALP3 (also known as cryopyrin and NLRP3)-independent inflammasome, which activates caspase-1 leading to maturation of pro-interleukin-1beta and inflammation. The nature of the cytoplasmic-DNA-sensing inflammasome is currently unknown. Here we show that AIM2 (absent in melanoma 2), an interferon-inducible HIN-200 family member that contains an amino-terminal pyrin domain and a carboxy-terminal oligonucleotide/oligosaccharide-binding domain, senses cytoplasmic DNA by means of its oligonucleotide/oligosaccharide-binding domain and interacts with ASC (apoptosis-associated speck-like protein containing a CARD) through its pyrin domain to activate caspase-1. The interaction of AIM2 with ASC also leads to the formation of the ASC pyroptosome, which induces pyroptotic cell death in cells containing caspase-1. Knockdown of AIM2 by short interfering RNA reduced inflammasome/pyroptosome activation by cytoplasmic DNA in human and mouse macrophages, whereas stable expression of AIM2 in the non-responsive human embryonic kidney 293T cell line conferred responsiveness to cytoplasmic DNA. Our results show that cytoplasmic DNA triggers formation of the AIM2 inflammasome by inducing AIM2 oligomerization. This study identifies AIM2 as an important inflammasome component that senses potentially dangerous cytoplasmic DNA, leading to activation of the ASC pyroptosome and caspase-1.


Assuntos
Citoplasma/genética , DNA/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Proteínas Nucleares/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Morte Celular , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , DNA/imunologia , Proteínas de Ligação a DNA , Ativação Enzimática , Humanos , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Ligação Proteica
12.
J Biol Chem ; 288(16): 11378-83, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23479736

RESUMO

Human pyrin with gain-of-function mutations in its B30.2/SPRY domain causes the autoinflammatory disease familial Mediterranean fever by assembling an ASC-dependent inflammasome that activates caspase-1. Wild-type human pyrin can also form an inflammasome complex with ASC after engagement by autoinflammatory PSTPIP1 mutants. How the pyrin inflammasome is activated in the absence of disease-associated mutations is not yet known. We report here that ribotoxic stress triggers the assembly of the human pyrin inflammasome, leading to ASC oligomerization and caspase-1 activation in THP-1 macrophages and in a 293T cell line stably reconstituted with components of the pyrin inflammasome. Knockdown of pyrin and selective inhibition of p38 MAPK greatly attenuated caspase-1 activation by ribotoxic stress, whereas expression of the conditional mutant ΔMEKK3:ER* allowed the activation of caspase-1 without ribotoxic stress. Disruption of microtubules by colchicine also inhibited pyrin inflammasome activation by ribotoxic stress. Together, our results indicate that ribotoxic stress activates the human pyrin inflammasome through a mechanism that requires p38 MAPK signaling and microtubule stability.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Inflamassomos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Estresse Fisiológico/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Colchicina/farmacologia , Proteínas do Citoesqueleto/genética , Humanos , Inflamassomos/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Pirina , Estresse Fisiológico/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
13.
J Biol Chem ; 287(43): 36617-22, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22948162

RESUMO

The NLRP3 inflammasome is a key component of the innate immune response to pathogenic infection and tissue damage. It is also involved in the pathogenesis of a number of human diseases, including gouty arthritis, silicosis, atherosclerosis, and type 2 diabetes. The assembly of the NLRP3 inflammasome requires a priming signal derived from pattern recognition or cytokine receptors, followed by a second signal derived from extracellular ATP, pore-forming toxins, or crystalline materials. How these two signals activate the NLRP3 inflammasome is not yet clear. Here, we show that in mouse macrophages, signaling by the pattern recognition receptor TLR4 through MyD88 can rapidly and non-transcriptionally prime NLRP3 by stimulating its deubiquitination. This process is dependent on mitochondrial reactive oxygen species production and can be inhibited by antioxidants. We further show that signaling by ATP can also induce deubiquitination of NLRP3 by a mechanism that is not sensitive to antioxidants. Pharmacological inhibition of NLRP3 deubiquitination completely blocked NLRP3 activation in both mouse and human cells, indicating that deubiquitination of NLRP3 is required for its activation. Our findings suggest that NLRP3 is activated by a two-step deubiquitination mechanism initiated by Toll-like receptor signaling and mitochondrial reactive oxygen species and further potentiated by ATP, which could explain how NLRP3 is activated by diverse danger signals.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Ubiquitinação , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Humanos , Inflamassomos/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
14.
J Immunol ; 187(9): 4890-9, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957143

RESUMO

Streptococcus pneumoniae is a Gram-positive, extracellular bacterium that is responsible for significant mortality and morbidity worldwide. Pneumolysin (PLY), a cytolysin produced by all clinical isolates of the pneumococcus, is one of the most important virulence factors of this pathogen. We have previously reported that PLY is an essential factor for activation of caspase-1 and consequent secretion of IL-1ß and IL-18 in macrophages infected with S. pneumoniae. However, the host molecular factors involved in caspase-1 activation are still unclear. To further elucidate the mechanism of caspase-1 activation in macrophages infected with S. pneumoniae, we examined the involvement of inflammasomes in inducing this cellular response. Our study revealed that apoptosis-associated specklike protein containing a caspase recruitment domain (ASC), an adaptor protein for inflammasome receptors such as nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2), is essentially required for the induction of caspase-1 activation by S. pneumoniae. Caspase-1 activation was partially impaired in NLRP3(-/-) macrophages, whereas knockdown and knockout of AIM2 resulted in a clear decrease in caspase-1 activation in response to S. pneumoniae. These results suggest that ASC inflammasomes, including AIM2 and NLRP3, are critical for caspase-1 activation induced by S. pneumoniae. Furthermore, ASC(-/-) mice were more susceptible than wild-type mice to S. pneumoniae, with impaired secretion of IL-1ß and IL-18 into the bronchoalveolar lavage after intranasal infection, suggesting that ASC inflammasomes contribute to the protection of host from infection with PLY-producing S. pneumoniae.


Assuntos
Caspase 1/metabolismo , Proteínas do Citoesqueleto/fisiologia , Imunidade Inata , Inflamassomos/fisiologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/fisiologia , Caspase 1/deficiência , Caspase 1/genética , Linhagem Celular , Linhagem Celular Transformada , Células Cultivadas , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA , Resistência à Doença/imunologia , Ativação Enzimática/imunologia , Feminino , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Nucleares/fisiologia , Infecções Pneumocócicas/enzimologia , Estreptolisinas/antagonistas & inibidores , Estreptolisinas/biossíntese
15.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100955

RESUMO

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Assuntos
Apoptose , Caspases , Animais , Humanos , Apoptose/genética , Morte Celular , Caspases/genética , Caspases/metabolismo , Carcinogênese , Mamíferos/metabolismo
16.
Apoptosis ; 17(12): 1287-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23054082

RESUMO

Polypeptide chain release factor eRF3 plays pivotal roles in translation termination and post-termination events including ribosome recycling and mRNA decay. It is not clear, however, if eRF3 is targeted for the regulation of gene expression. Here we show that DNA-damaging agents (UV and etoposide) induce the immediate cleavage and degradation of eRF3 in a caspase-dependent manner. The effect is selective since the binding partners of eRF3, eRF1 and PABP, and an unrelated control, GAPDH, were not affected. Point mutations of aspartate residues within overlapping DXXD motifs near the amino terminus of eRF3 prevented the appearance of the UV-induced cleavage product, identifying D32 as the major cleavage site. The cleavage and degradation occurred in a similar time-dependent manner to those of eIF4G, a previously established caspase-3 target involved in the inhibition of translation during apoptosis. siRNA-mediated knockdown of eRF3 led to inhibition of cellular protein synthesis, supporting the idea that the decrease in the amount of eRF3 caused by the caspase-mediated degradation contributes to the inhibition of translation during apoptosis. This is the first report showing that eRF3 could serve as a target in the regulation of gene expression.


Assuntos
Apoptose , Caspase 3/metabolismo , Dano ao DNA/efeitos da radiação , Fatores de Terminação de Peptídeos/metabolismo , Apoptose/efeitos da radiação , Caspase 3/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Proteólise/efeitos da radiação , Raios Ultravioleta
18.
J Immunol ; 185(5): 2670-4, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20679532

RESUMO

The mechanisms by which the intracellular pathogen Francisella tularensis evades innate immunity are not well defined. We have identified a gene with homology to Escherichia coli mviN, a putative lipid II flippase, which F. tularensis uses to evade activation of innate immune pathways. Infection of mice with a F. tularensis mviN mutant resulted in improved survival and decreased bacterial burdens compared to infection with wild-type F. tularensis. The mviN mutant also induced increased absent in melanoma 2 inflammasome-dependent IL-1beta secretion and cytotoxicity in macrophages. The compromised in vivo virulence of the mviN mutant depended upon inflammasome activation, as caspase 1- and apoptosis-associated speck-like protein containing a caspase recruitment domain-deficient mice did not exhibit preferential survival following infection. This study demonstrates that mviN limits F. tularensis-induced absent in melanoma 2 inflammasome activation, which is critical for its virulence in vivo.


Assuntos
Proteínas de Bactérias/genética , Regulação para Baixo/imunologia , Francisella tularensis/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Mutação , Proteínas Nucleares/metabolismo , Regulação para Cima/imunologia , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/fisiologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Proteínas de Ligação a DNA , Regulação para Baixo/genética , Francisella tularensis/imunologia , Francisella tularensis/patogenicidade , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Ativação de Macrófagos/genética , Macrófagos/microbiologia , Macrófagos/patologia , Melanoma/imunologia , Camundongos , Camundongos Knockout , Mutação/genética , Mutação/imunologia , Regulação para Cima/genética , Virulência/genética , Virulência/imunologia , Fatores de Virulência/fisiologia
19.
Mol Cancer Res ; 20(12): 1811-1821, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044013

RESUMO

Lack of response and acquired resistance continue to be limitations of targeted and immune-based therapies. Pyroptosis is an inflammatory form of cell death characterized by the release of inflammatory damage-associated molecular patterns (DAMP) and cytokines via gasdermin (GSDM) protein pores in the plasma membrane. Induction of pyroptosis has implications for treatment strategies in both therapy-responsive, as well as resistance forms of melanoma. We show that the caspase-3 activator, raptinal, induces pyroptosis in both human and mouse melanoma cell line models and delays tumor growth in vivo. Release of DAMPs and inflammatory cytokines was dependent on caspase activity and GSDME expression. Furthermore, raptinal stimulated pyroptosis in melanoma models that have acquired resistance to BRAF and MEK inhibitor therapy. These findings add support to efforts to induce pyroptosis in both the treatment-naïve and resistant settings. IMPLICATIONS: Raptinal can rapidly induce pyroptosis in naïve and BRAFi plus MEKi-resistant melanoma, which may be beneficial for patients who have developed acquired resistance to targeted therapies.


Assuntos
Melanoma , Piroptose , Camundongos , Animais , Humanos , Piroptose/fisiologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Ciclopentanos , Citocinas
20.
J Biol Chem ; 285(13): 9792-9802, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20093358

RESUMO

Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1 beta and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-kappaB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-kappaB inhibitors revealed that the synthetic I kappaB kinase-beta inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-kappaB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Nitrilas/farmacologia , Sesquiterpenos/farmacologia , Sulfonas/farmacologia , Animais , Células da Medula Óssea/metabolismo , Caspase 1/metabolismo , Morte Celular , Humanos , Immunoblotting , L-Lactato Desidrogenase/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa