Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683016

RESUMO

Corroborating data sustain the pleiotropic effect of nerve growth factor (NGF) in the protection of the visual system from dangerous stimuli, including ultraviolet (UV). Since UV exposure might promote ocular surface changes (conjunctival inflammation and matrix rearrangement), as previously reported from in vivo studies sustaining some protective NGF effects, in vitro cultures of human conjunctival fibroblasts (FBs) were developed and exposed to a single UV exposure over 15 min (0.277 W/m2), either alone or supplemented with NGF (1-10-100 ng/mL). Conditioned media and cell monolayers were collected and analyzed for protein release (ELISA, ELLA microfluidic) and transcript expression (real-time PCR). A specific "inflammatory to remodeling" pattern (IL8, VEGF, IL33, OPN, and CYR61) as well as a few epigenetic transcripts (known as modulator of cell differentiation and matrix-remodeling (DNMT3a, HDAC1, NRF2 and KEAP1)) were investigated in parallel. UV-exposed FBs (i), showed no proliferation or significant cytoskeleton rearrangement; (ii), displayed a trkANGFR/p75NTR phenotype; and (iii), synthesized/released IL8, VEGF-A, IL33, OPN, and CYR61, as compared to unexposed ones. NGF addition counteracted IL8, IL33, OPN, and CYR61 protein release merely at lower NGF concentrations but not VEGF. NGF supplementation did not affect DNMT3a or HDAC1 transcripts, while it significantly upregulated NRF2 at lowest NGF doses and did not change KEAP1 expression. Taken together, a single UV exposure activated conjunctival FBs to release pro-inflammatory/fibrogenic factors in association with epigenetic changes. The effects were selectively counteracted by NGF supplementation in a dose-dependent fashion, most probably accountable to the trkANGFR/p75NTR phenotype. Further in vitro studies are underway to better understand this additional NGF pleiotropic effect. Since UV-shield impairments represent a worldwide alert and UV radiation can slowly affect ocular surface homeostasis (photo-ageing, cataract) or might exacerbate ocular diseases with a preexisting fibrosis (pterygium, VKC), these findings on NGF modulation of UV-exposed FBs might provide additional information for protecting the ocular surface (homeostasis) from low-grade long-lasting UV insults.


Assuntos
Fator de Crescimento Neural , Receptor trkA , Fibroblastos/metabolismo , Humanos , Interleucina-33/metabolismo , Interleucina-8/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
2.
Adv Exp Med Biol ; 1331: 11-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453289

RESUMO

The neurotrophic factor nerve growth factor (NGF) has been discovered in the 1950s by Rita Levi-Montalcini, first in a neoplastic tissue and, later, in the mouse salivary gland (see 1A). Levi-Montalcini characterized its action in the sensory and sympathetic neurons (1B) and, a few years later, in central nervous, endocrine, and immune systems. Nerve growth factor plays its trophic role both during development and in adulthood, ensuring the maintenance of phenotypic and functional characteristic of several populations of neurons as well as immune cells. The aim of the present overview is to describe my personal scientific and human experiences working with Rita Levi-Montalcini for over 45 years, first at Washington University in St. Louis, Missouri, USA, searching (1) the invertebrate neurotrophic factor in the cockroaches and, later, at the Institute of Neurobiology of the National Research Council (CNR) in Rome studying (2) the role of NGF for various neuronal and non-neuronal functions; (3) the potential involvement of NGF in the pathobiology of human cutaneous, ocular, neurodegenerative, and cardiometabolic diseases; and finally (4) NGF potential clinical application.


Assuntos
Fator de Crescimento Neural , Neurônios , Animais , Insetos , Camundongos , Neurobiologia , Fator de Crescimento Transformador beta
3.
Adv Exp Med Biol ; 1331: 255-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453304

RESUMO

Nerve growth factor (NGF) is a neuroprotective molecule performing not only on central and peripheral neurons but also on cells of the visual system. Human retinitis pigmentosa (RP) is a major cause of blindness worldwide, and a resolute therapy is still lacking. Recent studies have shown that ocular NGF administration exerts a protective action on damaged retinal cells of mammalians, including human beings, although whether NGF also protects photoreceptors is not clear.We used the Royal College of Surgeons (RCS) strain in this study. The RCS is a rodent affected by inherited retinitis pigmentosa (RP) during postnatal life. For this study, we investigated whether ocular NGF treatment reduces/stops the progression of photoreceptor degeneration of rats with RP.This study was carried out in vitro on isolated photoreceptors to further investigate the action on these cells and whether the action is direct or mediated.The results indicate that ocular NGF administration can protect photoreceptors from degeneration into a model developing inherited RP and that the NGF action is direct. In this regard, we observed that binding of NGF to its receptor modulates expression of rhodopsin, a specific biological marker for photoreceptor survival and functionality.Part of the data reported in this chapter has been published in a previous study.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Fator de Crescimento Neural/genética , Células Fotorreceptoras , Ratos , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Rodopsina/genética
4.
Graefes Arch Clin Exp Ophthalmol ; 256(4): 729-738, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29450621

RESUMO

PURPOSE: Based on evidence that nerve growth factor (NGF) exerts healing action on damaged corneal, retinal, and cutaneous tissues, the present study sought to assess whether topical NGF application can prevent and/or protect epithelial cells from deleterious effects of ultraviolet (UV) radiation. METHODS: Eyes from 40 young-adult Sprague Dawley rats and cutaneous tissues from 36 adult nude mice were exposed to UVA/B lamp for 60 min, either alone or in the presence of murine NGF. Corneal, retinal, and cutaneous tissues were sampled/processed for morphological, immunohistochemical, and biomolecular analysis, and results were compared statistically. RESULTS: UV exposure affected both biochemical and molecular expression of NGF and trkANGFR in corneal, retinal, and cutaneous tissues while UV exposure coupled to NGF treatment enhanced NGF and trkANGFR expression as well as reduced cell death. CONCLUSIONS: Overall, the findings of this in vivo/ex vivo study show the NGF ability to reduce the potential UV damage. Although the mechanism underneath this effect needs further investigation, these observations prospect the development of a pharmacological NGF-based therapy devoted to maintain cell function when exposed to phototoxic UV radiation.


Assuntos
Córnea/metabolismo , Doenças da Córnea/genética , Regulação da Expressão Gênica/efeitos da radiação , Fator de Crescimento Neural/genética , Retina/metabolismo , Doenças Retinianas/genética , Pele/metabolismo , Animais , Contagem de Células , Sobrevivência Celular , Células Cultivadas , Córnea/patologia , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Feminino , Masculino , Camundongos , Camundongos Nus , Microscopia Confocal , Fator de Crescimento Neural/biossíntese , Ratos , Ratos Sprague-Dawley , Retina/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Pele/patologia , Raios Ultravioleta/efeitos adversos
5.
Graefes Arch Clin Exp Ophthalmol ; 255(3): 567-574, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28013393

RESUMO

PURPOSE: Our previous study highlighted the potential nerve growth factor (NGF) effect on damaged photoreceptors from a rat model of spontaneous Retinitis Pigmentosa (RP). Herein, we tested the combined NGF/anti-vascular endothelial growth factor (αVEGF) effect on cultured retinal cells isolated from Royal College of Surgeons (RCS) rats receiving an intravitreal VEGF injection (iv-VEGF) to exacerbate retinal inflammation/neovascularization. METHODS: RCS (n = 75) rats were equally grouped as untreated (n = 25), iv-saline (single saline intravitreal injection; n = 25) and iv-VEGF (single VEGF intravitreal injection; n = 25). Morphological and biochemical analysis or in vitro stimulations with the biomolecular investigation were carried out on explanted retinas. Isolated retinal cells were treated with NGF and αVEGF, either alone or in combination, for 6 days and cells were harvested for morphological and biomolecular analyses. RESULTS: Infiltrating inflammatory cells were detected in iv-VEGF exposed RCS retinas, indicative of exacerbated inflammation and neovascularization. In cell cultures, NGF/αVEGF significantly increased retinal cell survival as well as rhodopsin expression and neurite outgrowth in photoreceptors. Particularly, NGF/αVEGF upregulated Bcl-2 mRNA, downregulated Bax mRNA, upregulated trkANGFR mRNA and finally upregulated both NGF mRNA and protein. CONCLUSIONS: These data confirm and extend our previous findings on NGF-photoreceptor crosstalk, highlighting that the NGF/αVEGF combination might be an interesting approach for improving neuroprotection of RCS retinal cells and likewise photoreceptors in the presence of neovascularization. Further studies are required to translate this in vitro approach into clinical practice.


Assuntos
Bevacizumab/administração & dosagem , Fator de Crescimento Neural/farmacologia , Células Fotorreceptoras de Vertebrados/patologia , Retinose Pigmentar/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/administração & dosagem , Animais , Animais Recém-Nascidos , Apoptose , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Injeções Intravítreas , Masculino , Microscopia Confocal , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
6.
Growth Factors ; 33(5-6): 401-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26728403

RESUMO

Nerve growth factor (NGF) exerts protective actions in the healthy and diseased nervous system. Intranasal administration is a suitable and safe strategy to deliver NGF to CNS neurons. We investigated whether nasal anti-NGF-antibody (ANA) administration affects neuronal autophagy, in view of its putative regulatory role in this process. We focused on olfactory bulbs (OB), neocortex (Cx), hippocampus (HF) and septal complex (SC), known to be NGF-responsive and autophagically active. Our combined molecular/morphological results demonstrate that intranasally administered ANA reaches brain NGF-target neurons and lowers the levels of endogenous NGF and its receptors. Treatment also affects - in a brain region-dependent manner - the expression of the autophagic proteins Beclin-1 and Ambra1, as well as that of proteins belonging to the Bcl2 family, namely Bax and Bcl-2, reflecting apoptotic dysregulation. This study provides a nongenetically modified, NGF-defective animal model, representing a suitable tool to investigate novel properties of the neurotrophin, especially in relation to autophagy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Anticorpos/imunologia , Proteínas Reguladoras de Apoptose/biossíntese , Autofagia/fisiologia , Fator de Crescimento Neural/metabolismo , Administração Intranasal , Animais , Anticorpos/administração & dosagem , Proteína Beclina-1 , Linhagem Celular Tumoral , Hipocampo/metabolismo , Neocórtex/metabolismo , Fator de Crescimento Neural/imunologia , Bulbo Olfatório/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ratos , Receptores de Fator de Crescimento Neural/metabolismo , Proteína X Associada a bcl-2/biossíntese
7.
Growth Factors ; 31(4): 115-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23777359

RESUMO

The nerve growth factor (NGF) belongs to a family of neurotrophic factors called neurotrophins. It was discovered as a molecule that stimulates the survival and maturation of developing neurons in the peripheral nervous system and has later been shown to protect adult neurons in the degenerating mammalian brain. Basic and clinical studies have been undertaken to use NGF as a therapeutic agent aimed at restoring and maintaining neuronal function in the central nervous system and to determine the mechanisms to safely deliver the molecule into the brain. Recent studies have also recognized that the role of NGF extends far beyond the horizon of nerve cells and even beyond the peripheral and central nervous system. Studies published from our laboratory have shown that topical application of NGF possesses a protective action on human pressure ulcer, corneal ulcer and glaucoma. Here, we will review these studies, supporting the therapeutic potential of NGF.


Assuntos
Fator de Crescimento Neural/metabolismo , Doenças Neurodegenerativas/terapia , Animais , Úlcera da Córnea/metabolismo , Úlcera da Córnea/terapia , Glaucoma/metabolismo , Glaucoma/terapia , Humanos , Fator de Crescimento Neural/uso terapêutico , Doenças Neurodegenerativas/metabolismo
8.
Cell Biol Int ; 37(8): 761-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23520136

RESUMO

The first cell growth factor, nerve growth factor (NGF), was discovered by Rita Levi-Montalcini (RLM) in the early 1950s. Originally identified as neurite outgrowth-stimulating factor, later studies revealed that non-neuronal cells, including immune cells, endothelial cells, cardiomyocytes, pancreatic beta cells, prostate epithelial and adipose tissue cells, were also targets for and/or sources of NGF. Nerve growth factor is well recognised as mediating multiple biological phenomena, ranging from the neurotrophic through immunotrophic and epitheliotrophic to metabotrophic effects. Consequently, NGF and other members of the neurotrophin family are implicated in the pathogenesis of a large spectrum of neuronal and non-neuronal diseases, ranging from Alzheimer's and other neurodegenerative diseases to atherosclerosis and cardiometabolic disorders. Recent studies have demonstrated the therapeutic potentials of NGF in these conditions, including ocular and cutaneous diseases. NGF TrkA receptor antagonists emerged as novel drugs for pain, prostate and breast cancer, melanoma and urinary bladder syndromes. Here, we briefly describe the 'unpredictable' ideogenesis of the discovery of NGF, a eureka in the neuroscience.


Assuntos
Neurociências/história , História do Século XX , História do Século XXI , Itália , Missouri , Prêmio Nobel
9.
Front Neurosci ; 17: 1111170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875668

RESUMO

Introduction: Nerve growth factor (NGF) is a pleiotropic molecule acting on different cell types in physiological and pathological conditions. However, the effect of NGF on the survival, differentiation and maturation of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), the cells responsible for myelin formation, turnover, and repair in the central nervous system (CNS), is still poorly understood and heavily debated. Methods: Here we used mixed neural stem cell (NSC)-derived OPC/astrocyte cultures to clarify the role of NGF throughout the entire process of OL differentiation and investigate its putative role in OPC protection under pathological conditions. Results: We first showed that the gene expression of all the neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR ) dynamically changes during the differentiation. However, only TrkA and p75NTR expression depends on T3-differentiation induction, as Ngf gene expression induction and protein secretion in the culture medium. Moreover, in the mixed culture, astrocytes are the main producer of NGF protein, and OPCs express both TrkA and p75NTR . NGF treatment increases the percentage of mature OLs, while NGF blocking by neutralizing antibody and TRKA antagonist impairs OPC differentiation. Moreover, both NGF exposure and astrocyte-conditioned medium protect OPCs exposed to oxygenglucose deprivation (OGD) from cell death and NGF induces an increase of AKT/pAKT levels in OPCs nuclei by TRKA activation. Discussion: This study demonstrated that NGF is implicated in OPC differentiation, maturation, and protection in the presence of metabolic challenges, also suggesting implications for the treatment of demyelinating lesions and diseases.

10.
Cells ; 12(9)2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174731

RESUMO

Spinal cord injury (SCI) is characterized by a cascade of events that lead to sensory and motor disabilities. To date, this condition is irreversible, and no cure exists. To improve myelin repair and limit secondary degeneration, we developed a multitherapy based on nanomedicines (NMeds) loaded with the promyelinating agent triiodothyronine (T3), used in combination with systemic ibuprofen and mouse nerve growth factor (mNGF). Poly-L-lactic-co-glycolic acid (PLGA) NMeds were optimized and loaded with T3 to promote sustained release. In vitro experiments confirmed the efficacy of T3-NMeds to differentiate oligodendrocyte precursor cells. In vivo rat experiments were performed in contusion SCI to explore the NMed biodistribution and efficacy of combo drugs at short- and long-term post-lesion. A strong anti-inflammatory effect was observed in the short term with a reduction of type M1 microglia and glutamate levels, but with a subsequent increase of TREM2. In the long term, an improvement of myelination in NG2-IR, an increase in MBP content, and a reduction of the demyelination area were observed. These data demonstrated that NMeds can successfully be used to obtain more controlled local drug delivery and that this multiple treatment could be effective in improving the outcome of SCIs.


Assuntos
Remielinização , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Remielinização/fisiologia , Distribuição Tecidual , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Bainha de Mielina/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Glicoproteínas de Membrana/farmacologia , Receptores Imunológicos
11.
J Transl Med ; 10: 239, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23190582

RESUMO

The physiological role of the neurotrophin nerve growth factor (NGF) has been characterized, since its discovery in the 1950s, first in the sensory and autonomic nervous system, then in central nervous, endocrine and immune systems. NGF plays its trophic role both during development and in adulthood, ensuring the maintenance of phenotypic and functional characteristic of several populations of neurons as well as immune cells. From a translational standpoint, the action of NGF on cholinergic neurons of the basal forebrain and on sensory neurons in dorsal root ganglia first gained researcher's attention, in view of possible clinical use in Alzheimer's disease patients and in peripheral neuropathies respectively. The translational and clinical research on NGF have, since then, enlarged the spectrum of diseases that could benefit from NGF treatment, at the same time highlighting possible limitations in the use of the neurotrophin as a drug. In this review we give a comprehensive account for almost all of the clinical trials attempted until now by using NGF. A perspective on future development for translational research on NGF is also discussed, in view of recent proposals for innovative delivery strategies and/or for additional pathologies to be treated, such as ocular and skin diseases, gliomas, traumatic brain injuries, vascular and immune diseases.


Assuntos
Ensaios Clínicos como Assunto , Fatores de Crescimento Neural/uso terapêutico , Animais , Vias de Administração de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Fatores de Crescimento Neural/administração & dosagem
12.
Cell Biol Int ; 36(3): 327-30, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22150107

RESUMO

Human adipose tissue is partitioned into two large depots (subcutaneous and visceral), and many small depots associated with internal organs, e.g. heart, blood vessels, major lymph nodes, pancreas, prostate gland and ovaries. Since the adipose 'Big Bang' led to the discovery of leptin (Zhang, Proenca, Maffei, Barone, Leopold and Friedman, Nature 1994;372:425-32), adipose tissue has been seen not merely as a lipid store, but as a secretory - endocrine and paracrine - organ, particularly in the pathogenesis of a number of diseases. Accordingly, two major sub-fields of adipobiology have emerged, viz. adipoendocrinology and adipoparacrinology, the latter herein being illustrated by PAAT (periadventitial adipose tissue) in vascular walls. A long-standing paradigm holds that the vascular wall consists of three coats, tunica intima, tunica media and tunica adventitia. It is now imperative that 'to further elucidate vascular function, we should no longer, as hitherto, separate adventitia and PAAT from the vascular wall, but keep them attached and in place, and subject to thorough examination' (Chaldakov, Fiore, Ghenev, Stankulov and Aloe, Int Med J 2000;7:43-9; Chaldakov, Stankulov and Aloe, Atherosclerosis 2001;154:237-8; Chaldakov GN, Stankulov IS, Fiore M, Ghenev PI and Aloe L, Atherosclerosis 2001;159:57-66). From the available data, we propose that it is time to rethink about vascular wall composition, and suggest that the PAAT may be considered the fourth and outermost vascular coat, hence, tunica adiposa (regarding the proximal segment of coronary artery, it is the innermost part of the EAT (epicardial adipose tissue) situated around the coronary adventitia). Its significance in the pathogenesis and therapy of CMDs (cardiometabolic diseases), particularly atherosclerosis and hypertension, requires further basic, translational and clinical studies.


Assuntos
Tecido Adiposo/patologia , Tecido Conjuntivo/patologia , Humanos , Túnica Íntima/patologia , Túnica Média/patologia
13.
Proc Natl Acad Sci U S A ; 106(32): 13469-74, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19805021

RESUMO

Elevated intraocular pressure (IOP) in glaucoma causes loss of retinal ganglion cells (RGCs) and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. We evaluated the effects of NGF eye drops in a rat model of glaucoma. We also treated 3 patients with progressive visual field defects despite IOP control. Glaucoma was induced in rats through injection of hypertonic saline into the episcleral vein. Initially, 2 doses of NGF (100 and 200 mug/mL) were tested on 24 rats, and the higher dose was found to be more effective. Glaucoma was then induced in an additional 36 rats: half untreated and half treated with 200 mug/mL NGF QID for 7 weeks. Apoptosis/survival of RGCs was evaluated by histological, biochemical, and molecular analysis. Three patients with advanced glaucoma underwent psychofunctional and electrofunctional tests at baseline, after 3 months of NGF eye drops, and after 3 months of follow-up. Seven weeks of elevated IOP caused RGC degeneration resulting in 40% cell death. Significantly less RGC loss was observed with NGF treatment (2,530 +/- 121 vs. 1,850 +/- 156 RGCs/mm(2)) associated with inhibition of cell death by apoptosis. Patients treated with NGF demonstrated long lasting improvements in visual field, optic nerve function, contrast sensitivity, and visual acuity. NGF exerted neuroprotective effects, inhibiting apoptosis of RGCs in animals with glaucoma. In 3 patients with advanced glaucoma, treatment with topical NGF improved all parameters of visual function. These results may open therapeutic perspectives for glaucoma and other neurodegenerative diseases.


Assuntos
Glaucoma/tratamento farmacológico , Fator de Crescimento Neural/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Animais , Morte Celular/efeitos dos fármacos , Sensibilidades de Contraste/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Glaucoma/patologia , Glaucoma/fisiopatologia , Humanos , Pressão Intraocular/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Soluções Oftálmicas , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Acuidade Visual/efeitos dos fármacos , Campos Visuais/efeitos dos fármacos
14.
Arch Ital Biol ; 150(1): 15-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22786834

RESUMO

VEGF and NGF are known to modulate corneal healing, neovascularisation and tear secretion. While a VEGF-NGF cross talk has been recently shown to modulate corneal healing in rats, it is not known whether it also plays a role in the regulation of lacrimal function. In this study we aim to investigate the effects of anti-VEGF eye drop treatment on lacrimal gland function and on the local expression of VEGF and NGF in rats. Tear function was measured in 3 months old rats by modified Schirmer test at baseline and after 3 weeks of topical anti-VEGF eye drop treatment. Whole lacrimal glands from rats were removed after treatment and analysed by ELISA for VEGF and NGF levels. To investigate if the effects of anti-VEGF were mediated by changes in the NGF-pathway, we repeated the experiments in RCS rats, a strain with NGF-pathway impairment associated with decreased tear flow. After topical treatment with anti-VEGF eye drops, an increase in tear secretion was observed in both wild-type and RCS rats. A significant decrease of VEGF levels was also observed in lacrimal glands of both RCS and SD rats, accompanied by a significant increase in NGF levels. Inhibition of VEGF at the ocular surface in rats results in changes of tear function and lacrimal gland levels of VEGF and NGF. Further studies on the VEGF/NGF cross-talk at the ocular surface may expand our knowledge on the pathogenesis of several diseases characterized by tear dysfunction.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Aparelho Lacrimal/metabolismo , Fator de Crescimento Neural/metabolismo , Soluções Oftálmicas/administração & dosagem , Lágrimas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Ensaio de Imunoadsorção Enzimática , Técnicas In Vitro , Aparelho Lacrimal/efeitos dos fármacos , Masculino , Soluções Oftálmicas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Lágrimas/metabolismo , Fatores de Tempo
15.
Riv Psichiatr ; 47(6): 527-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23160113

RESUMO

INTRODUCTION: BDNF is present in human serum and its level changes have been used as a marker of antidepressant efficacy in some psychiatric disorders. In addition, the positive effects of light therapy on major depression suggest that circadian-regulated factors should be taken into account in the management of mood disorders. The aim of the present study was to test ultradian fluctuations in serum and salivary BDNF levels and their interaction with light therapy in a sample of healthy women. METHODS: The study included 16 young women. Psychopathological status and chronotype traits were assessed by SPAQ, BDI, STAI, TAS, and MEQ. Standard light treatment protocol was applied. Serum and saliva were collected at 8.00, 13.00 and 20.00 hrs on the same day and at the end of light therapy. RESULTS: BDNF levels declined over the course of the day both in serum and saliva, and a correlation between diurnal BDNF trend and personality traits and habits characterizing the morning and evening types in healthy women was found. CONCLUSIONS: The present study is one of the first to show measurable BDNF in human saliva and to demonstrate its daily fluctuations in both saliva and serum of healthy young women. The correlation between diurnal changes in BDNF and the personality traits associated with body rhythms corroborates the notion that salivary BDNF may be a useful biomarker for stress-related research and different clinical investigations.


Assuntos
Relógios Biológicos , Fator Neurotrófico Derivado do Encéfalo/sangue , Ritmo Circadiano , Fototerapia , Saliva/metabolismo , Adulto , Biomarcadores/sangue , Depressão/sangue , Feminino , Humanos , Personalidade , Inventário de Personalidade , Estudos de Amostragem , Estatísticas não Paramétricas , Estresse Psicológico/sangue , Estudantes
16.
Arch Ital Biol ; 149(2): 175-81, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21701989

RESUMO

The nerve growth factor (NGF) is a signaling protein, discovered by Rita Levi-Montalcini in the early 1950's for its effect on growth and differentiation of specific populations of neurons of the peripheral nervous system. Originally identified as neurite outgrowth-stimulating factor, later studies revealed that the purified molecule has a number of target cells in the central nervous system and on nonneuronal cells. Moreover, recent studies showed the potential therapeutic properties of NGF in neuropathies of the central and peripheral nervous system and diseases of the eye and skin. Here I briefly describe the discovery of NGF, the early studies of Rita LeviMontalcini, a pioneer in modern neuroscience, and my scientific and human experience working in her laboratory for over 40 years.


Assuntos
Fator de Crescimento Neural/história , Fator de Crescimento Neural/fisiologia , Neurônios/metabolismo , Neurociências/história , Idoso de 80 Anos ou mais , Feminino , História do Século XX , História do Século XXI , Humanos , Prêmio Nobel
17.
Arch Ital Biol ; 149(2): 275-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21702000

RESUMO

Hypoxic-ischemic injuries (HII) of the brain, optic pathways, and skin are frequently associated with poor neurological and clinical outcome. Unfortunately, no new therapeutic approaches have been proposed for these conditions. Recently, experimental and clinical studies showed that nerve growth factor (NGF) can improve neurological deficits, visual loss and skin damage after HII. Based on these studies, we report the effects of NGF administration in different lesions of the brain, optic pathways and skin. 2.5S NGF purified and lyophilized from male mouse submaxillary glands was utilized for the treatment. NGF administration was started in absence of recovery after conventional and standardized treatment. One mg NGF was administered via the external catheter into the brain, by drop administration in the eye, and by subcutaneous administration in the skin. We treated 4 patients: 2 children with hypoxic-ischemic brain damage, an adult patient with an optic glioma-induced visual loss and a child with a severe crush syndrome of the lower left limb. After NGF treatment, we observed an amelioration of both neurological and electrophysiological function of the brain, a subjective and objective improvement of visual function, and a gradual improvement of ischemic skin lesion. No side effects were related to NGF treatment in all patients studied. Our observation shows that NGF administration may be an effective and safe adjunct therapy in patients with severe HII. The beneficial and prolonged effect on nerve function suggests a neuroprotective mechanism exerted by NGF on the residual viable neurological pathways of these patients.


Assuntos
Lesões Encefálicas/prevenção & controle , Fator de Crescimento Neural/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Dermatopatias/tratamento farmacológico , Administração Oftálmica , Animais , Lesões Encefálicas/diagnóstico por imagem , Pré-Escolar , Feminino , Seguimentos , Humanos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/terapia , Lactente , Injeções Intradérmicas/métodos , Masculino , Camundongos , Pessoa de Meia-Idade , Glioma do Nervo Óptico/tratamento farmacológico , Glioma do Nervo Óptico/fisiopatologia , Dermatopatias/etiologia , Tomografia Computadorizada de Emissão de Fóton Único
18.
Arch Ital Biol ; 149(2): 283-92, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21702001

RESUMO

Nerve Growth Factor (NGF) and its receptors TrkA and p75 are expressed in physiological states in the anterior and posterior segments of the human eye, where they exert several tissue-specific functions. The roles played by NGF in the homeostasis of the eye and in vision are, therefore, crucial and have been widely investigated both in vitro and in vivo, with growing evidence of an NGF-pathway alteration in several ocular diseases. In this review we describe the functions of NGF in health and diseases states of the eye, and discuss the potential therapeutic effectiveness of NGF in preliminary clinical reports performed in severe ocular diseases unresponsive to any standard treatment. In fact, pharmacodynamic studies showing that NGF administered topically on the ocular surface affects not only the ocular surface but is also able to reach the retina, optic nerve and brain, recently opened new perspectives for the treatment of challenging ocular surface diseases, optic nerve diseases, and degenerative diseases of the retina currently lacking an effective therapy.


Assuntos
Oftalmopatias/tratamento farmacológico , Fator de Crescimento Neural/uso terapêutico , Administração Oftálmica , Oftalmopatias/classificação , Humanos
19.
Int J Ophthalmol ; 14(2): 209-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614448

RESUMO

AIM: To develop an experimental model of endogenous nerve growth factor (NGF) deprivation by retrobulbar administration of purified neutralizing anti-NGF antibodies in young Sprague-Dawley rats and provide further information on NGF expression in the retina and cornea. METHODS: Sixty old pathogen-free Sprague Dawley rats (p14, post-natal days) were treated with repeated retrobulbar injections of neutralizing anti-NGF (2 µL, 100 µg/mL, every 3d). After 2wk (p28), retinal and corneal tissues were investigated for morphological, biochemical, and molecular expression of trkANGFR by using Western blotting or immunofluorescence. Rhodopsin as well as protein profile expression were also investigated. RESULTS: Chronic retrobulbar neutralizing anti-NGF antibodies changed the distribution of trkANGFR immunoreactivity at retinal level, while no changes were detected for global trkANGFR protein expression. By contrary, the treatment resulted in the increase of corneal trkANGFR expression. Retinal tissues showed a decreased rhodopsin expression as well as reduced number of both rhodopsin expressing and total retinal cells, as observed after single cell extraction. A decreased expression of ICAM-1, IL-17 and IL-13 as well as an increased expression of IL-21 typified retinal extracts. No significant changes were observed for corneal tissues. CONCLUSION: The reduced availability of endogenous NGF, as produced by chronic retrobulbar anti-NGF administration, produce a quick response from retinal tissues, with respect to corneal ones, suggesting the presence of early compensatory mechanisms to protect retinal networking.

20.
Front Neurosci ; 15: 695592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335170

RESUMO

Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa