Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metabolites ; 12(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736494

RESUMO

Neuropeptides play a major role in maintaining normal brain development in children. Dysfunction of some specific neuropeptides can lead to autism spectrum disorders (ASD) in terms of social interaction and repetitive behavior, but the exact underlying etiological mechanisms are still not clear. In this study, we used an animal model of autism to investigate the role of bee pollen and probiotic in maintaining neuropeptide levels in the brain. We measured the Alpha-melanocyte-stimulating hormone (α-MSH), Beta-endorphin (ß-End), neurotensin (NT), and substance P (SP) in brain homogenates of six studied groups of rats. Group I served as control, given only PBS for 30 days; Group II as an autistic model treated with 250 mg PPA/kg BW/day for 3 days after being given PBS for 27 days. Groups III-VI were denoted as intervention groups. G-III was treated with bee pollen (BP) 250 mg/kg body weight/day; G-IV with Lactobacillus paracaseii (LB) (109 CFU/mL) suspended in PBS; G-V with 0.2 g/kg body weight/day Protexin®, a mixture of probiotics (MPB); and G-VI was transplanted with stool from normal animals (FT) for 27 days prior to the induction of PPA neurotoxicity on the last 3 days of study (days 28-30). The obtained data were analyzed through the use of principal component analysis (PCA), discriminant analysis (DA), hierarchical clustering, and receiver operating characteristic (ROC) curves as excellent statistical tools in the field of biomarkers. The obtained data revealed that brain levels of the four measured neuropeptides were significantly reduced in PPA-treated animals compared to healthy control animals. Moreover, the findings demonstrate the ameliorative effects of bee pollen as a prebiotic and of the pure or mixed probiotics. This study proves the protective effects of pre and probiotics against the neurotoxic effects of PPA presented as impaired levels of α-MSH, ß-End, NT, and SP.

2.
J Mol Neurosci ; 72(2): 349-358, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34562183

RESUMO

The present study investigated that maternal type 1 diabetes may contribute to autism pathogenesis in offspring, and that insulin therapy during pregnancy may prevent the onset of autism. As evidenced, selected brain biomarkers representing the accepted etiological mechanism of autism in newborn rats from diabetic mothers and diabetic mothers receiving insulin therapy compared to the propionic acid (PPA) rodent model of autism were screened. Female Wistar rats with a controlled fertility cycle were randomly divided into three groups: a control group, a group treated with a single dose of 65 mg/kg streptozotocin (STZ) to induce type 1 diabetes (T1D), and a group treated with a single dose of STZ to induce T1D along with insulin therapy. Neonatal rats from these groups were divided into four experimental groups of six animals each: the control group, oral buffered PPA-treated group administered a neurotoxic dose of 250 mg/kg PPA for 3 days to induce autism, neonatal rats from mothers with T1D, and neonatal rats from mothers with T1D receiving insulin therapy. Biochemical parameters of oxidative stress, neuroinflammation, and glutamate excitotoxicity were examined in brain homogenates from all neonatal rats. The development of pathogenic bacteria was monitored in stool samples from all rat groups. Descriptive analyses of changes in fecal microbiota and overgrowth of Clostridium species were performed in diabetic mothers, diabetic mothers treated with insulin therapy, and their offspring. Clostridium species may induce autism-relevant behaviors in offspring from mothers with T1D. Maternal T1D without insulin therapy increased lipid peroxidation levels, reduced GST activity, and lower offspring' vitamin C and GSH levels. Increased IL-6 levels and reduced GABA levels were detected in brain homogenates from neonatal rats whose mothers had T1D. Interestingly, insulin therapy reduced MDA and IL-6 levels and increased GST, GSH, and vitamin C levels in brain homogenates of neonatal rats from mothers with T1D receiving insulin therapy compared to the PPA-treated group. Based on our results, the PPA-treated group and neonatal rats from mothers with T1D exhibited similar results. These findings suggest that neonatal rats from mothers with T1D may develop autism-relevant biochemical autistic features and that insulin therapy may ameliorate oxidative stress, poor detoxification, inflammation, and excitotoxicity as ascertained mechanisms involved in the etiology of autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Diabetes Mellitus , Animais , Transtorno do Espectro Autista/etiologia , Transtorno Autístico/tratamento farmacológico , Feminino , Estresse Oxidativo , Gravidez , Ratos , Ratos Wistar , Roedores
3.
Biomedicine (Taipei) ; 12(3): 12-19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381187

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency disorder affecting over 400 million individuals worldwide. G6PD protects red blood cells (RBC) from the harmful effects of oxidative substances. There are more than 400 G6PD mutations, of which 186 variants have shown to be linked to G6PD deficiency by decreasing the activity or stability of the enzyme. Different variants manifest different clinical phenotypes which complicate comprehending the mechanism of the disease. In order to carry out computational approaches to elucidate the structural changes of different G6PD variants that are common to the Asian population, a complete G6PD monomer-ligand complex was constructed using AutoDock 4.2, and the molecular dynamics simulation package GROMACS 4.6.7 was used to study the protein dynamics. The G410D and V291M variants were chosen to represent classes I and II respectively and were created by in silico site-directed mutagenesis. Results from the Root mean square deviation (RMSD), Root mean square fluctuation (RMSF) and Radius of gyration (Rg) analyses provided insights on the structure - function relationship for the variants. G410D indicated impaired dimerization and structural NADP binding while the impaired catalytic activity for V291M was indicated by a conformational change at its mutation site.

4.
Metabolites ; 12(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36005593

RESUMO

Autism spectrum disorders (ASDs) comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, such as marked impairment in verbal and nonverbal communication, social skills, and cognition. Excitatory/inhibitory (E/I) imbalances have been recorded as an etiological mechanism of ASD. Furthermore, GABA, the main inhibitory neurotransmitter in adult life, is known to be much lower in both patients and rodent models of ASD. We propose correcting GABA signaling as a therapeutic strategy for ASD. In this study, 40 young male western Albino rats, 3−4 weeks in age, weighing about 60−70 g, were used. The animals were randomly assigned into six experimental groups, each including eight rats. Group I served as the control group and was orally administered phosphate-buffered saline. Groups II and III served as rodent models of ASD and were orally administered a neurotoxic dose of propionic acid (PPA). The rats in the three therapeutic groups (IV, V, and IV) received the same doses of PPA, followed by 0.2 g/kg body weight of pure Bifidobacterium infantis, a probiotic mixture of ProtexinR, and pure Lactobacillus bulgaricus, respectively, for 3 weeks. Selected variables related to oxidative stress, glutamate excitotoxicity, and gut bacteria were measured in the six groups. Both pure and mixed Lactobacillus and Bifidobacterium were effective in ameliorating glutamate excitotoxicity as an autistic feature developed in the PPA-induced rodent model. Their therapeutic effects mostly involved the correction of oxidative stress, restoration of depleted GABA, and up-regulation of GABA receptor gene expression. Pure Bifidobacterium was the most effective, followed by the mixture of probiotics and finally lactobacillus. In conclusion, Bifidobacteria and lactobacilli can be used independently or in combination as psychobiotics to ameliorate oxidative stress and glutamate excitotoxicity as two confirmed etiological mechanisms through the gut−brain axis.

5.
Metabolites ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295814

RESUMO

Increasing numbers of patients who recover from COVID-19 report lasting symptoms, such as fatigue, muscle weakness, dementia, and insomnia, known collectively as post-acute COVID syndrome or long COVID. These lasting symptoms have been examined in different studies and found to influence multiple organs, sometimes resulting in life-threating conditions. In this review, these symptoms are discussed in connection to the COVID-19 and long-COVID-19 immune changes, highlighting oral and psychiatric health, as this work focuses on the gut microbiota's link to long-COVID-19 manifestations in the liver, heart, kidney, brain, and spleen. A model of this is presented to show the biological and clinical implications of gut microbiota in SARS-CoV-2 infection and how they could possibly affect the therapeutic aspects of the disease. Probiotics can support the body's systems in fighting viral infections. This review focuses on current knowledge about the use of probiotics as adjuvant therapies for COVID-19 patients that might help to prevent long-COVID-19 complications.

6.
Biomed Pharmacother ; 141: 111831, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34237596

RESUMO

Obesity is a global epidemic disease that is closely associated with various health problems as Diabetes mellitus, cardiovascular, and metabolic disorders. Lycopene (LYC), a red-colored carotenoid, has demonstrated various promising therapeutic effects. Hence, the potential of LYC was studied against high fat diet (HFD)-induced obesity and metabolic disturbances in rats. Animals fed on HFD and orally supplemented with LYC (25 and 50 mg/kg) or simvastatin (10 mg/kg) every day for 3 months. The results revealed that long-term consumption of HFD significantly increased weight gain, liver weight, cholesterol, triglycerides (TG), apolipoprotein-B (Apo-B), low-density lipoprotein-cholesterol (LDL-c) levels, as well as decreasing the high-density lipoprotein-cholesterol (HDL-c) levels. Moreover, high blood glucose and insulin levels accompanied by low peroxisome proliferator activated receptor gamma (PPAR-γ) were recorded in HFD group. Further, HFD rats displayed lower levels of antioxidant biomarkers (SOD, CAT, GPx, GR and GSH), in addition to higher levels of MDA, NO and inflammatory mediators (IL-1ß, TNF-α, and MPO). Marked increases were observed in atherogenic index, lactate dehydrogenase and creatine kinase together with fibrosis markers (TGF-ß1 and α-SMA) in rats fed on HFD. Comparing to model group, LYC was able to effectively reverse HFD-mediated alterations at dose dependent manner. Altogether, dietary supplementation of LYC successfully reversed HFD-induced alterations through its antioxidant, anti-inflammatory, and anti-fibrotic properties. Hence, LYC displayed a therapeutic potential to manage obesity and its associated pathologies.


Assuntos
Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Licopeno/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Obesidade/complicações , Animais , Anti-Inflamatórios/farmacologia , Glicemia/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Cirrose Hepática/tratamento farmacológico , Masculino , Ratos , Ratos Wistar , Sinvastatina/uso terapêutico , Aumento de Peso/efeitos dos fármacos
7.
Int J Nanomedicine ; 15: 3471-3482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547008

RESUMO

INTRODUCTION: Nanoparticles are at the forefront of rapidly developing nanotechnology and have gained much attention for their application as an effective drug delivery system and as a mediated therapeutic agent for cancer. However, the cytotoxicity of nanoparticles is still relatively unknown and, therefore, additional study is required in order to elucidate the potential toxicity of these nanoparticles on cells. MATERIALS AND METHODS: Thus, the following work aimed to investigate the capability of Beta vulgaris (beetroot) water extract (BWE; 200 mg/kg) to protect hepatic tissue following silver nanoparticles (AgNPs; 80 mg/kg; >100 nm) intoxication in male rats. RESULTS: AgNPs-intoxication elevated the liver function markers - including serum transaminases and alkaline phosphatase activities - and decreased serum levels of albumin and total proteins, in addition to disturbing the oxidation homeostasis. This is evidenced by the increased lipid peroxidation, the depleted glutathione, and the suppressed activity of superoxide dismutase and catalase. In addition, an apoptotic reaction was observed following AgNPs treatment, as indicated by the up-regulation of p53 and down-regulating Bcl-2 expressions, examined by the immunohistochemistry method. Furthermore, AgNPs exhibited a marked elevation in liver DNA damage that was indicated by an increase in tail length, tail DNA% and tail movement. However, BWE eliminated the biochemical and histological alterations, reflecting its hepatoprotection effect in response to AgNPs. DISCUSSION: Collectively, the present data suggest that BWE could be used following AgNPs as a potential therapeutic intervention to minimize AgNPs-induced liver toxicity.


Assuntos
Beta vulgaris/química , Sucos de Frutas e Vegetais , Fígado/patologia , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Dano ao DNA , Fragmentação do DNA/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes de Função Hepática , Masculino , Nanopartículas Metálicas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa