Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Behav Pharmacol ; 34(5): 251-262, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401396

RESUMO

Here, we investigate the effects of obesity induced by monosodium glutamate (MSG) on cognitive impairment and whether this model induces any alteration in the affinity, density, and subtypes of muscarinic acetylcholine receptors (mAChRs) in rat hippocampus. Healthy rats were used as controls, and MSG-obese rats were selected via the Lee index > 0.300. The effects of MSG-induced obesity on hippocampal spatial learning and memory processes were evaluated by using the working memory versions of the Morris' water maze task and the evaluation of mAChRs by binding assay and their subtypes by immunoprecipitation assays. [ 3 H]Quinuclidinyl benzilate specific binding analysis showed that the equilibrium dissociation constant (K D ) did not differ between control and MSG, indicating that affinity is not affected by obesity induced by MSG. The maximum number of binding sites (B max ) obtained in MSG subjects was lower than that obtained from control rats, indicating a decrease in the expression of total mAChRs. Immunoprecipitation assays reveal a decrease in the expression of M 1 subtype of MSG when compared with control rats (M 2 to M 5 subtypes did not differ between control and MSG). We also observed that MSG promotes a disruption of the spatial working memory which was accompanied by a decrease in the M 1 mAChR subtype in rat hippocampus, thus suggesting deleterious long-term effects besides the obesity. In conclusion, these findings provide new insights into how obesity can influence spatial learning and memory that is hippocampal-dependent. The data suggest that the M 1 mAChR subtype protein expression is a potential therapeutic target.


Assuntos
Receptores Muscarínicos , Glutamato de Sódio , Ratos , Animais , Glutamato de Sódio/efeitos adversos , Glutamato de Sódio/metabolismo , Ratos Wistar , Receptores Muscarínicos/metabolismo , Obesidade , Hipocampo
2.
Biochem Pharmacol ; 169: 113630, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31491414

RESUMO

Here, we described the effects of obesity induced by high-calorie diet and its treatment with exenatide, an anti-diabetogenic and potential anti-obesogenic drug derived from the venom of the Gila monster Heloderma suspectum, on the affinity, density, subtypes and intracellular signaling pathways linked to activation of muscarinic acetylcholine receptors (mAChRs) in rat hippocampus. Male Wistar rats were divided into three groups: control (CT), obese induced by high-calorie diet (DIO) and DIO treated with exenatide (DIO + E). [3H]Quinuclidinyl benzilate specific binding analysis showed that the equilibrium dissociation constant (KD) did not differ among CT, DIO and DIO + E, indicating that affinity is not affected by high-calorie diet or its treatment with exenatide. On the other hand, the density of mAChRs obtained in DIO animals was lower than that obtained from CT rats, and that DIO + E restored the density of mAChRs. Immunoprecipitation assays reveal a decrease in the expression of M1 and M3 subtypes of DIO animals when compared with CT. Treatment with exenatide (DIO + E) restored the expression of the two subtypes similar to obtained from CT. On the other hand, the M2, M4 and M5 mAChR subtypes expression did not differ among CT, DIO and DIO + E. Carbacol caused a concentration-dependent increase in the accumulation of total [3H] inositol phosphate in CT, DIO and DIO + E. However, the magnitude of the maximal response to carbachol was lower in DIO when compared with those obtained from CT and DIO + E animals, which did not differ from each other. Our results indicate that obesity induced by high-calorie diet strongly influences the expression and intracellular signaling coupled to M1-M3 mAChR subtypes. The exenatide ameliorated these effects, suggesting an important role on hippocampal muscarinic cholinergic system. This action of obesity induced by high-calorie diet and its treatment with exenatide might be a key step mediating cellular events important for learning and memory.


Assuntos
Exenatida/uso terapêutico , Hipocampo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Receptores Muscarínicos/efeitos dos fármacos , Animais , Carbacol/farmacologia , Ingestão de Energia , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Hipocampo/fisiologia , Masculino , Ratos , Ratos Wistar , Receptores Muscarínicos/fisiologia
3.
Behav Pharmacol, v. 34, n. 5, 243-250, ago. 2023
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-4995

RESUMO

Here, we investigate the effects of obesity induced by monosodium glutamate (MSG) on cognitive impairment and whether this model induces any alteration in the affinity, density, and subtypes of muscarinic acetylcholine receptors (mAChRs) in rat hippocampus. Healthy rats were used as controls, and MSG-obese rats were selected via the Lee index > 0.300. The effects of MSG-induced obesity on hippocampal spatial learning and memory processes were evaluated by using the working memory versions of the Morris’ water maze task and the evaluation of mAChRs by binding assay and their subtypes by immunoprecipitation assays. [3H]Quinuclidinyl benzilate specific binding analysis showed that the equilibrium dissociation constant (KD) did not differ between control and MSG, indicating that affinity is not affected by obesity induced by MSG. The maximum number of binding sites (Bmax) obtained in MSG subjects was lower than that obtained from control rats, indicating a decrease in the expression of total mAChRs. Immunoprecipitation assays reveal a decrease in the expression of M1 subtype of MSG when compared with control rats (M2 to M5 subtypes did not differ between control and MSG). We also observed that MSG promotes a disruption of the spatial working memory which was accompanied by a decrease in the M1 mAChR subtype in rat hippocampus, thus suggesting deleterious long-term effects besides the obesity. In conclusion, these findings provide new insights into how obesity can influence spatial learning and memory that is hippocampal-dependent. The data suggest that the M1 mAChR subtype protein expression is a potential therapeutic target.

4.
Toxicon ; 135: 1-11, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28579479

RESUMO

INTRODUCTION: Glucagon-like peptide-1 (GLP-1) receptor (R) agonists are a class of incretin mimetic drugs that have been used for the treatment of type 2 diabetes mellitus and also considered strong candidates for the treatment of obesity. The original prototypical drug in this class is the exenatide, a synthetic peptide with the same structure as the native molecule, exendin-4, found in the saliva of the Gila monster (Heloderma suspectum suspectum lizard). OBJECTIVES: To identify and compare the anti-obesogenic, antidyslipidemic and antidiabetogenic effects of agonism in GLP-1R by exenatide on two distinct models of obesity: induced by hypothalamic injury (MSG) or high-calorie diet (DIO). METHODS: To obtain MSG, neonatal rats were daily subcutaneously injected with 4 g monosodium glutamate/kg, for 10 consecutive days. To obtain DIO, 72-75 days old rats received hyperlipid food and 30% sucrose for drinking up to 142-145 days old. Untreated healthy rats with the same age were used as control. General biometric and metabolic parameters were measured. RESULTS: MSG was characterized by decreased naso-anal length, food and fluid intake, plasma protein and glucose decay rate per minute after insulin administration (KITT), as well as increased Lee index (body mass0.33/naso-anal length), mass of retroperitoneal and periepididymal fat pads, glycemia, triglycerides (TG), LDL and VLDL. Exenatide ameliorated KITT and food and fluid intake, and it also restored glycemia in MSG. DIO was characterized by glucose intolerance, increased body mass, Lee index, fluid intake, mass of retroperitoneal and periepididymal fat pads, glycemia, glycated hemoglobin (HbA1c), TG, VLDL and total cholesterol, as well as decreased food intake and KITT. Exenatide restored glycemia, HbA1c, TG, VLDL, total cholesterol and body mass, and it also ameliorated food and fluid intake, KITT and mass of retroperitoneal fat pad in DIO. CONCLUSIONS: The hypothalamic injury and the high-calorie diet induce dyslipidemia and glycemic dysregulation in addition to obesity in rats. The usual therapeutic dose of exenatide in humans is antidiabetogenic in both these obesity models, but is anti-obesogenic and hypolipidemic only in diet-induced obesity. Agonists of GLP-1R are promising anti-obesogenic and antidyslipidemic drugs in the early stages of the obesity, in which the integrity of the nervous system was unaffected.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Lagartos , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Glicemia , Dieta/veterinária , Ingestão de Alimentos/efeitos dos fármacos , Exenatida , Feminino , Hipotálamo/efeitos dos fármacos , Masculino , Obesidade/induzido quimicamente , Ratos Wistar , Saliva/química , Glutamato de Sódio/farmacologia
5.
J Endocrinol ; 228(2): 97-104, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26577934

RESUMO

The lack of a complete assembly of the sensitivity of subcellular aminopeptidase (AP) activities to insulin in different pathophysiological conditions has hampered the complete view of the adipocyte metabolic pathways and its implications in these conditions. Here we investigated the influence of insulin on basic AP (APB), neutral puromycin-sensitive AP (PSA), and neutral puromycin-insensitive AP (APM) in high and low density microsomal and plasma membrane fractions from adipocytes of healthy and obese rats. Catalytic activities of these enzymes were fluorometrically monitoring in these fractions with or without insulin stimulus. Canonical traffic such as insulin-regulated AP was not detected for these novel adipocyte APs in healthy and obese rats. However, insulin increased APM in low density microsomal and plasma membrane fractions from healthy rats, APB in high density microsomal fraction from obese rats and PSA in plasma membrane fraction from healthy rats. A new concept of intracellular compartment-dependent upregulation of AP enzyme activities by insulin emerges from these data. This relatively selective regulation has pathophysiological significance, since these enzymes are well known to act as catalysts and receptor of peptides directly related to energy metabolism. Overall, the regulation of each one of these enzyme activities reflects certain dysfunction in obese individuals.


Assuntos
Adipócitos/enzimologia , Aminopeptidases/metabolismo , Insulina/farmacologia , Obesidade/enzimologia , Adipócitos/ultraestrutura , Animais , Antígenos CD13/metabolismo , Membrana Celular/enzimologia , Metabolismo Energético/fisiologia , Feminino , Masculino , Microssomos/enzimologia , Ratos , Ratos Wistar
6.
Mol Cell Endocrinol ; 415: 24-31, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26257241

RESUMO

This study checked the existence of a diverse array of aminopeptidase (AP) enzymes in high (HDM) and low (LDM) density microsomal and plasma membrane (MF) fractions from adipocytes of control, monosodium glutamate obese and food deprived rats. Gene expression was detected for ArgAP, AspAP, MetAP, and two AlaAP (APM and PSA). APM and PSA had the highest catalytic efficiency, whereas AspAP the highest affinity. Subcellular distribution of AP activities depended on metabolic status. Comparing catalytic levels, AspAP in HDM, LDM and MF was absent in obese and control under food deprivation; PSA in LDM was 3.5-times higher in obese than in normally fed control and control and obese under food deprivation; MetAP in MF was 4.5-times higher in obese than in food deprived obese. Data show new AP enzymes genetically expressed in subcellular compartments of adipocytes, three of them with altered catalytic levels that respond to whole-body energetic demands.


Assuntos
Aminopeptidases/genética , Aminopeptidases/metabolismo , Jejum/metabolismo , Obesidade/enzimologia , Glutamato de Sódio/efeitos adversos , Adipócitos/citologia , Adipócitos/enzimologia , Animais , Membrana Celular/enzimologia , Jejum/sangue , Feminino , Regulação da Expressão Gênica , Masculino , Microssomos/enzimologia , Obesidade/sangue , Obesidade/induzido quimicamente , Obesidade/genética , Ratos
7.
J Mol Endocrinol ; 55(1): 1-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25999180

RESUMO

Insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) in adipocytes is well known to traffic between high (HDM) and low (LDM) density microsomal fractions toward the plasma membrane (MF) under stimulation by insulin. However, its catalytic preference for aminoacyl substrates with N-terminal Leu or Cys is controversial. Furthermore, possible changes in its traffic under metabolic challenges are unknown. The present study investigated the catalytic activity attributable to EC 3.4.11.3 in HDM, LDM and MF from isolated adipocytes of healthy (C), food deprived (FD) and monosodium glutamate (MSG) obese rats on aminoacyl substrates with N-terminal Cys or Leu, in absence or presence of insulin. Efficacy and reproducibility of subcellular adipocyte fractionation procedure were demonstrated. Comparison among HDM vs LDM vs MF intragroup revealed that hydrolytic activity trafficking from LDM to MF under influence of insulin in C, MSG and FD is only on N-terminal Cys. In MSG the same pattern of anterograde traffic and aminoacyl preference occurred independently of insulin stimulation. The pathophysiological significance of IRAP in adipocytes seems to be linked to comprehensive energy metabolism related roles of endogenous substrates with N-terminal cysteine pair such as vasopressin and oxytocin.


Assuntos
Adipócitos/metabolismo , Aminopeptidases/metabolismo , Cisteína/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Animais , Membrana Celular/metabolismo , Metabolismo Energético/fisiologia , Feminino , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
8.
Biochem. Pharmacol. ; 169: 113630, 2019.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17393

RESUMO

Here, we described the effects of obesity induced by high-calorie diet and its treatment with exenatide, an anti-diabetogenic and potential anti-obesogenic drug derived from the venom of the Gila monster Heloderma suspectum, on the affinity, density, subtypes and intracellular signaling pathways linked to activation of muscarinic acetylcholine receptors (mAChRs) in rat hippocampus. Male Wistar rats were divided into three groups: control (CT), obese induced by high-calorie diet (DIO) and DIO treated with exenatide (DIO+E). [3H]Quinuclidinyl benzilate specific binding analysis showed that the equilibrium dissociation constant (KD) did not differ among CT, DIO and DIO+E, indicating that affinity is not affected by high-calorie diet or its treatment with exenatide. On the other hand, the density of mAChRs obtained in DIO animals was lower than that obtained from CT rats, and that DIO+E restored the density of mAChRs. Immunoprecipitation assays reveal a decrease in the expression of M1 and M3 subtypes of DIO animals when compared with CT. Treatment with exenatide (DIO+E) restored the expression of the two subtypes similar to obtained from CT. On the other hand, the M2, M4 and M5 mAChR subtypes expression did not differ among CT, DIO and DIO+E. Carbacol caused a concentration-dependent increase in the accumulation of total [3H] inositol phosphate in CT, DIO and DIO+E. However, the magnitude of the maximal response to carbachol was lower in DIO when compared with those obtained from CT and DIO+E animals, which did not differ from each other. Our results indicate that obesity induced by high-calorie diet strongly influences the expression and intracellular signaling coupled to M1-M3 mAChR subtypes. The exenatide ameliorated these effects, suggesting an important role on hippocampal muscarinic cholinergic system. This action of obesity induced by high-calorie diet and its treatment with exenatide might be a key step mediating cellular events important for learning and memory.Here, we described the effects of obesity induced by high-calorie diet and its treatment with exenatide, an anti-diabetogenic and potential anti-obesogenic drug derived from the venom of the Gila monster Heloderma suspectum, on the affinity, density, subtypes and intracellular signaling pathways linked to activation of muscarinic acetylcholine receptors (mAChRs) in rat hippocampus. Male Wistar rats were divided into three groups: control (CT), obese induced by high-calorie diet (DIO) and DIO treated with exenatide (DIO+E). [3H]Quinuclidinyl benzilate specific binding analysis showed that the equilibrium dissociation constant (KD) did not differ among CT, DIO and DIO+E, indicating that affinity is not affected by high-calorie diet or its treatment with exenatide. On the other hand, the density of mAChRs obtained in DIO animals was lower than that obtained from CT rats, and that DIO+E restored the density of mAChRs. Immunoprecipitation assays reveal a decrease in the expression of M1 and M3 subtypes of DIO animals when compared with CT. Treatment with exenatide (DIO+E) restored the expression of the two subtypes similar to obtained from CT. On the other hand, the M2, M4 and M5 mAChR subtypes expression did not differ among CT, DIO and DIO+E. Carbacol caused a concentration-dependent increase in the accumulation of total [3H] inositol phosphate in CT, DIO and DIO+E. However, the magnitude of the maximal response to carbachol was lower in DIO when compared with those obtained from CT and DIO+E animals, which did not differ from each other. Our results indicate that obesity induced by high-calorie diet strongly influences the expression and intracellular signaling coupled to M1-M3 mAChR subtypes. The exenatide ameliorated these effects, suggesting an important role on hippocampal muscarinic cholinergic system. This action of obesity induced by high-calorie diet and its treatment with exenatide might be a key step mediating cellular events important for learning and memory.

9.
Brain Res. ; 1704: p. 40-46, 2019.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15604

RESUMO

A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-ß-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.

10.
Toxicon ; 135: 1-11, 2017.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15041

RESUMO

Introduction: Glucagon-like peptide-1(GLP-1) receptor (R) agonists are a class of incretin mimetic drugs that have been used for the treatment of type 2 diabetes mellitus and also considered strong candidates for the treatment of obesity. The original prototypical drug in this class is the exenatide, a synthetic peptide with the same structure as the native molecule, exendin-4, found in the saliva of the Gila monster (Heloderma suspectum suspectum lizard). Objectives: To identify and compare the anti-obesogenic, antidyslipidemic and antidiabetogenic effects of agonism in GLP-1R by exenatide on two distinct models of obesity: induced by hypothalamic injury (MSG) or high-calorie diet (DIO). Methods: To obtain MSG, neonatal rats were daily subcutaneously injected with 4 g monosodium glutamate/kg, for 10 consecutive days. To obtain DID, 72-75 days old rats received hyperlipid food and 30% sucrose for drinking up to 142-145 days old. Untreated healthy rats with the same age were used as control. General biometric and metabolic parameters were measured. Results: MSG was characterized by decreased naso-anal length, food and fluid intake, plasma protein and glucose decay rate per minute after insulin administration (K-ITT), as well as increased Lee index (body mass(0.33)/naso-anal length), mass of retroperitoneal and periepididymal fat pads, glycemia, triglycerides (TG), LDL and VLDL. Exenatide ameliorated K-ITT and food and fluid intake, and it also restored glycemia in MSG. DIO was characterized by glucose intolerance, increased body mass, Lee index, fluid intake, mass of retroperitoneal and periepididymal fat pads, glycemia, glycated hemoglobin (HbAlc), TG, VLDL and total cholesterol, as well as decreased food intake and K-ITT. Exenatide restored glycemia, HbA1c, TG, VLDL, total cholesterol and body mass, and it also ameliorated food and fluid intake, K-ITT and mass of retroperitoneal fat pad in DIO. Conclusions: The hypothalamic injury and the high-calorie diet induce dyslipidemia and glycemic dysregulation in addition to obesity in rats. The usual therapeutic dose of exenatide in humans is anti-diabetogenic in both these obesity models, but is anti-obesogenic and hypolipidemic only in diet-induced obesity. Agonists of GLP-1R are promising anti-obesogenic and antidyslipidemic drugs in the early stages of the obesity, in which the integrity of the nervous system was unaffected.

11.
J. Endocrinol ; 228(2): p. 97-104, 2016.
Artigo | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib13917

RESUMO

The lack of a complete assembly of the sensitivity of subcellular aminopeptidase (AP) activities to insulin in different pathophysiological conditions has hampered the complete view of the adipocyte metabolic pathways and its implications in these conditions. Here we investigated the influence of insulin on basic AP (APB), neutral puromycin-sensitive AP (PSA), and neutral puromycin-insensitive AP (APM) in high and low density microsomal and plasma membrane fractions from adipocytes of healthy and obese rats. Catalytic activities of these enzymes were fluorometrically monitoring in these fractions with or without insulin stimulus. Canonical traffic such as insulin-regulated AP was not detected for these novel adipocyte APs in healthy and obese rats. However, insulin increased APM in low density microsomal and plasma membrane fractions from healthy rats, APB in high density microsomal fraction from obese rats and PSA in plasma membrane fraction from healthy rats. A new concept of intracellular compartment-dependent upregulation of AP enzyme activities by insulin emerges from these data. This relatively selective regulation has pathophysiological significance, since these enzymes are well known to act as catalysts and receptor of peptides directly related to energy metabolism. Overall, the regulation of each one of these enzyme activities reflects certain dysfunction in obese individuals


Assuntos
Bioquímica , Farmacologia , Endocrinologia
12.
Regul Pept ; 167(2-3): 215-21, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21324345

RESUMO

The objective of this study was to investigate the catalytic activity of basic aminopeptidase (APB) and its association with periarticular edema and circulating tumor necrosis factor (TNF)-alpha and type II collagen (CII) antibodies (AACII) in a rat model of rheumatoid arthritis (RA) induced by CII (CIA). Edema does not occur in part of CII-treated, even when AACII is higher than in control. TNF-alpha is detectable only in edematous CII-treated. APB in synovial membrane is predominantly a membrane-bound activity also present in soluble form and with higher activity in edematous than in non-edematous CII-treated or control. Synovial fluid and blood plasma have lower APB in non-edematous than in edematous CII-treated or control. In peripheral blood mononuclear cells (PBMCs) the highest levels of APB are found in soluble form in control and in membrane-bound form in non-edematous CII-treated. CII treatment distinguishes two categories of rats: one with arthritic edema, high AACII, detectable TNF-alpha, high soluble and membrane-bound APB in synovial membrane and low APB in the soluble fraction of PBMCs, and another without edema and with high AACII, undetectable TNF-alpha, low APB in the synovial fluid and blood plasma and high APB in the membrane-bound fraction of PBMCs. Data suggest that APB and CIA are strongly related.


Assuntos
Aminopeptidases/metabolismo , Artrite Experimental/enzimologia , Aminopeptidases/sangue , Animais , Biomarcadores/metabolismo , Masculino , Ratos , Líquido Sinovial/enzimologia , Líquido Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Regul Pept ; 166(1-3): 98-104, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-20851150

RESUMO

Protein (western blotting) and gene (PCR) expressions, catalytic activity of puromycin-insensitive membrane-bound neutral aminopeptidase (APM/CD13) and in situ regional distribution of CD13 and FOS immunoreactivity (ir) were evaluated in the hypothalamus of monosodium glutamate obese (MSG) and/or food deprived (FD) rats in order to investigate their possible interplay with metabolic functions. Variations in protein and gene expressions of CD13 relative to controls coincided in the hypothalamus of MSG and MSG-FD (decreased 2- to 17-fold). Compared with controls, the reduction of hypothalamic CD13 content reflected a negative balance in its regional distribution in the supraoptic, paraventricular, periventricular and arcuate nuclei. CD13-ir increased in the supraoptic nucleus in MSG (2.5-fold) and decreased in the paraventricular nucleus (2-fold) together with FOS-ir (1.5-fold) in FD. In MSG-FD, FOS-ir decreased (7-fold) in the paraventricular nucleus, while CD13-ir decreased in the periventricular (5.6-fold) and the arcuate (3.7-fold) nuclei. It was noteworthy that all these changes of CD13 were not related to catalytic activity of APM. Data suggested that hypothalamic CD13 plays a role in the regulation of energy metabolism not by means of APM enzyme activity.


Assuntos
Antígenos CD13/metabolismo , Hipotálamo Anterior/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Privação de Alimentos/fisiologia , Masculino , Obesidade/induzido quimicamente , Obesidade/metabolismo , Ratos , Glutamato de Sódio
14.
Toxicon ; 57(1): 148-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21087618

RESUMO

Snake bite accidents by Bothrops genus is an important public health issue in Brazil and one of its most serious complications is the acute kidney injury (AKI). Here we evaluated the effects of Bothrops jararaca venom (vBj) and the treatments with lipoic acid (LA) and simvastatin (SA) on renal function, aminopeptidase (AP) activities and renal redox status. Primordial events for establishment of AKI by vBj were hyperuricemia, hypercreatinemia, urinary hyperosmolality, renal oxidative stress and reduction of hematocrit and protein content in the membrane of renal cortex and medulla and in the plasma. In the renal cortex and medulla the changes caused by vBj in soluble and membrane-bound AP activities had a similar pattern. The beneficial effects of LA and SA on envenomed mice were similar on the hyperuricemia, renal oxidative stress and reduction of hematocrit. LA mitigated the hypercreatinemia, but exacerbated the urinary urea and creatinine, whereas SA mitigated the decrease of plasma urea, urinary hyperosmolality and hypercreatinuria induced by vBj. The beneficial effects of LA and especially of SA on renal effects of vBj open a new perspective for clinical investigations of these drugs as coadjuvant agents in the serotherapy of Bothrops envenomation.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Anticolesterolemiantes/farmacologia , Antioxidantes/farmacologia , Bothrops/fisiologia , Venenos de Crotalídeos/toxicidade , Sinvastatina/farmacologia , Ácido Tióctico/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Aminopeptidases/metabolismo , Animais , Modelos Animais de Doenças , Rim/química , Rim/efeitos dos fármacos , Rim/fisiopatologia , Testes de Função Renal , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/metabolismo , Resultado do Tratamento
15.
Metabolism ; 60(2): 234-42, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20153005

RESUMO

Proline-specific dipeptidyl peptidases are emerging as a protease family with important roles in the regulation of signaling by peptide hormones related to energy balance. The treatment of neonatal rats with monosodium glutamate (MSG) is known to produce a selective damage on the arcuate nucleus with development of obesity. This study investigates the relationship among dipeptidyl peptidase IV (DPPIV) hydrolyzing activity, CD26 protein, fasting, and MSG model of obesity in 2 areas of the central nervous system. Dipeptidyl peptidase IV and CD26 were, respectively, evaluated by fluorometry, and enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction in soluble (SF) and membrane-bound (MF) fractions from the hypothalamus and hippocampus of MSG-treated and normal rats, submitted or not to food deprivation (FD). Dipeptidyl peptidase IV in both areas was distinguished kinetically as insensitive (DI) and sensitive (DS) to diprotin A. Compared with the controls, MSG and/or FD decreased the activity of DPPIV-DI in the SF and MF from the hypothalamus, as well as the activity of DPPIV-DS in the SF from the hypothalamus and in the MF from the hippocampus. Monosodium glutamate and/or FD increased the activity of DPPIV-DI in the MF from the hippocampus. The monoclonal protein expression of membrane CD26 by enzyme-linked immunosorbent assay decreased in the hypothalamus and increased in the hippocampus of MSG and/or FD relative to the controls. The existence of DPPIV-like activity with different sensitivities to diprotin A and the identity of insensitive with CD26 were demonstrated for the first time in the central nervous system. Data also demonstrated the involvement of DPPIV-DI/CD26 hydrolyzing activity in the energy balance probably through the regulation of neuropeptide Y and ß-endorphin levels in the hypothalamus and hippocampus.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Jejum/metabolismo , Hipocampo/enzimologia , Hipotálamo/enzimologia , Obesidade/enzimologia , Animais , Animais Recém-Nascidos , Dipeptidil Peptidase 4/análise , Modelos Animais de Doenças , Privação de Alimentos , Hipocampo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Masculino , Obesidade/induzido quimicamente , Ratos , Glutamato de Sódio/farmacologia
16.
J Comp Physiol B ; 178(1): 57-66, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17703311

RESUMO

The effects of water and salt overload on the activities of the supraoptic and paraventricular nuclei and the adjacent periventricular zone of the hypothalamus of the snake Bothrops jararaca were investigated by measurements of Fos-like immunoreactivity (Fos-ir). Both water and salt overload resulted in changes in body mass, plasma osmolality, and plasma concentrations of sodium, potassium, and chloride. Hyper-osmolality increased Fos immunoreactivity in the rostral supraoptic nucleus (SON), the paraventricular nucleus (PVN), and adjacent periventricular areas. Both hyper- and hypo-osmolality increased Fos immunoreactivity in the intermediate SON, but not in other areas of the hypothalamus. Immunostaining was abundant in cerebrospinal fluid (CSF)-contacting tanycyte-like cells in the ependymal layer of the third ventricle. These data highlight some features of regional distribution of Fos immunoreactivity that are consistent with vasotocin functioning as a hormone, and support the role of hypothalamic structures in the response to disruption of salt and water balance in this snake.


Assuntos
Bothrops/metabolismo , Hipotálamo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Desequilíbrio Hidroeletrolítico/metabolismo , Animais , Bothrops/sangue , Cálcio/sangue , Cloretos/sangue , Hematócrito , Hipotálamo Anterior/metabolismo , Imuno-Histoquímica , Magnésio/sangue , Concentração Osmolar , Núcleo Hipotalâmico Paraventricular/metabolismo , Potássio/sangue , Sódio/sangue , Terceiro Ventrículo/metabolismo , Desequilíbrio Hidroeletrolítico/sangue
17.
J Comp Physiol B ; 176(8): 821-30, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16838134

RESUMO

We used four complementary techniques to investigate the presence of oxytocin peptide in the hypophysis and brain of the snake Bothrops jararaca. A high-pressure liquid chromatographic analysis failed to show oxytocin in extracts of hypophysial and brain tissues but provided estimative values of the amounts of vasotocin (12 ng/mg hypophysis and 0.5 ng/mg brain) and mesotocin (500 pg/mg hypophysis and 8 pg/mg brain). Western blots with a polyclonal anti-oxytocin antibody failed to detect oxytocin in both tissues but detected compounds with higher molecular weight than oxytocin, as well as a relatively weak cross-reactivity with mesotocin. The reverse transcription-polymerase chain reaction analysis failed to detect the expression of oxytocin gene transcript, but detected a transcript related to the mesotocin-neurophysin precursor in both tissues. Immunohistochemistry with the same anti-oxytocin antibody detected strong staining in the neurohypophysis and in few fibers in the inner zone of the median eminence, which was not abolished by pre-adsorption of this antibody with oxytocin, vasopressin, vasotocin or mesotocin and might not be attributed to oxytocin. In conclusion, our data demonstrate the absence of oxytocin in the central nervous system of the snake B. jararaca and underline the pitfalls that can result from the use of a single technique to investigate the presence of peptides in tissues.


Assuntos
Encéfalo/metabolismo , Ocitocina/análise , Hipófise/metabolismo , Animais , Western Blotting , Bothrops/metabolismo , Cromatografia Líquida de Alta Pressão , Imuno-Histoquímica , Ocitocina/análogos & derivados , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vasotocina/análise
18.
Artigo em Inglês | MEDLINE | ID: mdl-16006161

RESUMO

The relationship between plasma osmolality and cystyl aminopeptidase was characterized in the snake Bothrops jararaca and comparisons were made with the emerging picture of this relationship in rats. The profile of cystyl aminopeptidase activity under basal conditions was determined in the soluble and membrane-bound forms in visceral organs and in the central nervous system in comparison with that of alanyl aminopeptidase. The regional localization of cystyl and alanyl aminopeptidase activities was studied in the central nervous system. The basal level of plasma cystyl aminopeptidase, four- to six-fold higher than in rats, suggests its importance to help regulate circulating levels of neurohypophysial peptides in B. jararaca snake. The osmotic sensitivity of this plasma enzyme, undetectable in male, but about three-fold higher in female snakes than in rats, reveals a sexual dimorphism. In marked contrast to those observed in rats, low levels of soluble and particulate forms in the kidney indicate that cystyl aminopeptidase plays a minor metabolizing role at this anatomical location in B. jararaca. Despite of the regional-specific divergence between the levels of rat and snake enzymes, the bilaterally symmetric pattern of the diencephalic distribution of alanyl aminopeptidase reflects functional homologies between these two distantly related species.


Assuntos
Bothrops/metabolismo , Encéfalo/enzimologia , Cistinil Aminopeptidase/metabolismo , Animais , Proteínas Sanguíneas/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Bothrops/anatomia & histologia , Cistinil Aminopeptidase/sangue , Diencéfalo/enzimologia , Feminino , Masculino , Concentração Osmolar , Ratos , Cloreto de Sódio/farmacologia , Vísceras/enzimologia
19.
Regul. pept ; 167(2/3): 215-221, Feb 13, 2011.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP, SES SP - Acervo Instituto Butantan | ID: biblio-1066210

RESUMO

The objective of this study was to investigate the catalytic activity of basic aminopeptidase (APB) and itsassociation with periarticular edema and circulating tumor necrosis factor (TNF)-alpha and type II collagen(CII) antibodies (AACII) in a rat model of rheumatoid arthritis (RA) induced by CII (CIA). Edema does not occurin part of CII-treated, even when AACII is higher than in control. TNF-alpha is detectable only in edematousCII-treated. APB in synovial membrane is predominantly a membrane-bound activity also present in solubleform and with higher activity in edematous than in non-edematous CII-treated or control. Synovial fluid andblood plasma have lower APB in non-edematous than in edematous CII-treated or control. In peripheral bloodmononuclear cells (PBMCs) the highest levels of APB are found in soluble form in control and in membraneboundform in non-edematous CII-treated. CII treatment distinguishes two categories of rats: one with arthritic edema, high AACII, detectable TNF-alpha, high soluble and membrane-bound APB in synovial membrane and low APB in the soluble fraction of PBMCs, and another without edema and with high AACII,undetectable TNF-alpha, low APB in the synovial fluid and blood plasma and high APB in the membranebound fraction of PBMCs. Data suggest that APB and CIA are strongly related.


Assuntos
Ratos , Aminopeptidases/análise , Aminopeptidases/imunologia , Artrite , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Edema/patologia , Fator de Necrose Tumoral alfa/análise
20.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP, SES SP - Acervo Instituto Butantan | ID: biblio-1064735

RESUMO

Proline-specific dipeptidyl peptidases are emerging as a protease family with important roles in the regulation of signaling by peptide hormones related to energy balance. The treatment of neonatal rats with monosodium glutamate (MSG) is known to produce a selective damage on the arcuate nucleus with development of obesity. This study investigates the relationship among dipeptidyl peptidase IV (DPPIV) hydrolyzing activity, CD26 protein, fasting, and MSG model of obesity in 2 areas of the central nervous system. Dipeptidyl peptidase IV and CD26 were, respectively, evaluated by fluorometry, and enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction in soluble (SF) and membrane-bound (MF) fractions from the hypothalamus and hippocampus of MSG-treated and normal rats, submitted or not to food deprivation (FD). Dipeptidyl peptidase IV in both areas was distinguished kinetically as insensitive (DI) and sensitive (DS) to diprotin A. Compared with the controls, MSG and/or FD decreased the activity of DPPIV-DI in the SF and MF from the hypothalamus, as well as the activity of DPPIV-DS in the SF from the hypothalamus and in the MF from the hippocampus. Monosodium glutamate and/or FD increased the activity of DPPIV-DI in the MF from the hippocampus. The monoclonal protein expression of membrane CD26 by enzyme-linked immunosorbent assay decreased in the hypothalamus and increased in the hippocampus of MSG and/or FD relative to the controls. The existence of DPPIV-like activity with different sensitivities to diprotin A and the identity of insensitive with CD26 were demonstrated for the first time in the central nervous system. Data also demonstrated the involvement of DPPIV-DI/CD26 hydrolyzing activity in the energy balance probably through the regulation of neuropeptide Y and â-endorphin levels in the hypothalamus and hippocampus.


Assuntos
Animais , Peptídeo Hidrolases/classificação , Sistema Nervoso , Ativação Enzimática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa