Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771180

RESUMO

Wilson's disease causes copper accumulation in the liver and extrahepatic organs. The available therapies aim to lower copper levels by various means. However, a potent drug that can repair the damaged liver and brain tissue is needed. Silymarin has hepatoprotective, antioxidant, and cytoprotective properties. However, poor oral bioavailability reduces its efficacy. In this study, a "thin film hydration method" was used for synthesizing silymarin-encapsulated liposome nanoparticles (SLNPs) and evaluated them against copper toxicity, associated liver dysfunction and neurobehavioral abnormalities in Wistar rats. After copper toxicity induction, serological and behavioral assays were conducted to evaluate treatment approaches. Histological examination of the diseased rats revealed severe hepatocyte necrosis and neuronal vacuolation. These cellular degenerations were mild in rats treated with SLNPs and a combination of zinc and SLNPs (ZSLNPs). SLNPs also decreased liver enzymes and enhanced rats' spatial memory significantly (p = 0.006) in the diseased rats. During forced swim tests, SLNPs treated rats exhibited a 60-s reduction in the immobility period, indicating reduced depression. ZSLNPs were significantly more effective than traditional zinc therapy in decreasing the immobility period (p = 0.0008) and reducing liver enzymes, but not in improving spatial memory. Overall, SLNPs enhanced oral silymarin administration and managed copper toxicity symptoms.


Assuntos
Degeneração Hepatolenticular , Silimarina , Ratos , Animais , Ratos Wistar , Silimarina/uso terapêutico , Cobre/farmacologia , Lipossomos/farmacologia , Fígado , Degeneração Hepatolenticular/tratamento farmacológico , Zinco/farmacologia , Zinco/uso terapêutico
2.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328564

RESUMO

Chronic liver disease (CLD) is a global threat to the human population, with manifestations resulting from alcohol-related liver disease (ALD) and non-alcohol fatty liver disease (NAFLD). NAFLD, if not treated, may progress to non-alcoholic steatohepatitis (NASH). Furthermore, inflammation leads to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Vitexin, a natural flavonoid, has been recently reported for inhibiting NAFLD. It is a lipogenesis inhibitor and activates lipolysis and fatty acid oxidation. In addition, owing to its antioxidant properties, it appeared as a hepatoprotective candidate. However, it exhibits low bioavailability and low efficacy due to its hydrophobic nature. A novel rat model for liver cirrhosis was developed by CCL4/Urethane co-administration. Vitexin encapsulated liposomes were synthesized by the 'thin-film hydration' method. Polyethylene glycol (PEG) was coated on liposomes to enhance stability and stealth effect. The diseased rats were then treated with vitexin and PEGylated vitexin liposomes, administered intravenously and orally. Results ascertained the liposomal encapsulation of vitexin and subsequent PEG coating to be a substantial strategy for treating liver cirrhosis through oral drug delivery.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Apigenina , Etanol , Lipossomos/uso terapêutico , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Polietilenoglicóis/uso terapêutico , Ratos , Ratos Sprague-Dawley
3.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443635

RESUMO

Generally, the bioconversion of lignocellulolytics into a new biomolecule is carried out through two or more steps. The current study used one-step bioprocessing of date palm fronds (DPF) into citric acid as a natural product, using a pioneer strain of Trichodermaharzianum (PWN6) that has been selected from six tested isolates based on the highest organic acid (OA) productivity (195.41 µmol/g), with the lowest amount of the released glucose. Trichoderma sp. PWN6 was morphologically and molecularly identified, and the GenBank accession number was MW78912.1. Both definitive screening design (DSD) and artificial neural network (ANN) were applied, for the first time, for modeling the bioconversion process of DPF. Although both models are capable of making accurate predictions, the ANN model outperforms the DSD model in terms of OA production, as ANN is characterized by a higher value of R2 (0.963) and validation R2 (0.967), and lower values of the RMSE (13.44), MDA (11.06), and SSE (9749.5). Citric acid was the only identified OA as was confirmed by GC-MS and UPLC, with a total of 1.5%. In conclusion, DPF together with T. harzianum PWN6 is considered an excellent new combination for citric acid biosynthesis, after modeling with artificial intelligence procedure.


Assuntos
Ácido Cítrico/metabolismo , Phoeniceae/metabolismo , Trichoderma/metabolismo , Inteligência Artificial , Celulase/metabolismo , Redes Neurais de Computação
4.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834112

RESUMO

Queen bee acid or 10-hydroxy-2-decenoic acid (10-HDA) is one of the main and unique lipid components (fatty acids) in royal jelly. Previous studies have demonstrated that 10-HDA has various pharmacological and biological activities. The present study aims to evaluate the anti-tumor effects of 10-HDA alone and combined with cyclophosphamide (CP), as an alkylating agent which widely used for the treatment of neoplastic cancers, against the Ehrlich solid tumors (EST) in mice. Methods: A total of 72 female Swiss albino mice were divided into eight groups. EST mice were treated with 10-HDA (2.5 and 5 mg/kg) alone and combined with CP (25 mg/kg) orally once a day for 2 weeks. Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO) and nitric oxide (NO), antioxidant enzymes (e.g. glutathione reductase (GR), glutathione peroxidase (GPx), catalase enzyme (CAT)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in tested mice. Results: the findings exhibited that treatment of EST-suffering mice with 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP significantly (p < 0.001) decreased the tumor volume and inhibition rate, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the mice in the C2 group; while 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP significantly (p < 0.001) improved the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusions: According to the results of the present investigations, 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP showed promising antitumor effects against EST in mice and can be recommended as a new or alternative anticancer agent against tumor; nevertheless, further investigations, particularly in clinical setting, are required to confirm these results.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Ehrlich , Ácidos Graxos Monoinsaturados/farmacologia , Proteínas de Neoplasias/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Ciclofosfamida/química , Ciclofosfamida/farmacologia , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Ácidos Graxos Monoinsaturados/química , Feminino , Camundongos
5.
J Food Biochem ; 46(4): e13845, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34231234

RESUMO

Hepatocellular carcinoma (HCC) is a lethal disease, and in HCC advanced stages, there is limited therapeutic efficacy. HCC results in a complication of fibrosis or cirrhosis. In this study, the protective effect of curcumin and selenium versus hepatocellular carcinoma caused by CCl4 in experimental animals was investigated. In all, 70 mice were divided into seven groups to study the effect of curcumin and selenium on CCl4 -induced hepatocellular carcinoma. After treatment time, different animal groups were sacrificed, serum and liver samples were collected and processed for assay of biochemical and molecular parameters. Our results showed that CCl4 administration induced various alterations such as significant elevation in the serum levels of ALT, AST, and hepatic contents of malondialdehyde (MDA), and depletion in the levels of antioxidant parameters. CCl4 induced apoptosis in the hepatic cells indicated by an increased level of p53, CD4, CD8, Bax, and Annexin V/PI in addition to significant decrease in the level of Bcl-2. Administration of curcumin and selenium restored this abnormal variation in these biochemical parameters to normal values. Our study addressed that curcumin or selenium may be helpful in the protection against liver damage induced by CCl4 . The hepatoprotective impact of curcumin or selenium might be mediated primarily by its potent antioxidant activity. PRACTICAL APPLICATIONS: Hepatocellular carcinoma (HCC) ranked third common cause of death, primary liver cancer. Exposure to CCl4 was found to induce significant hepatotoxicity, characterized by fibrosis, bile duct proliferation, cirrhosis, and reduced hepatic function The work was prepared to investigate the protecting capacity of curcumin, selenium alone, and in combination against HCC induced by CCl4 in the experimental animal model. This study proved the protective effect of curcumin and selenium, alone and in combination with each other, where curcumin showed multiple pharmacological activities, including anti-inflammation and antioxidant, and have an essential role in inhibiting the progression of HCC.


Assuntos
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Selênio , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Curcumina/farmacologia , Cirrose Hepática , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Estresse Oxidativo
6.
Biomed Res Int ; 2022: 7233997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528154

RESUMO

Objective: The present study was aimed at evaluating the antitumor effects of royal jelly (RJ) obtained from Apis mellifera compared with cyclophosphamide against the Ehrlich solid tumors (EST) in mice. Methods: Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO), nitric oxide (NO), antioxidant enzymes (glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in EST mice treated with RJ (200 and 400 mg/kg orally once a day for 2 weeks). Results: The results showed that treatment of EST-suffering mice with RJ at the doses of 200 and 400 mg/kg causes significant reduction in tumor volume and inhibition rate, body weight, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the EST mice receiving the normal saline; whereas RJ at the doses of 200 and 400 mg/kg/day significantly increased (p < 0.05) the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusion: The findings revealed that oral administration of royal jelly especially at the doses of 200 and 400 mg/kg exhibited promising antitumor effects against EST in mice through induction of apoptosis as well as its antioxidant and anti-inflammatory effects, which suggest it as a novel anticancer agent against tumor; however, additional surveys especially in clinical setting are necessary to approve these findings.


Assuntos
Antioxidantes , Neoplasias , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Abelhas , Peso Corporal , Ácidos Graxos , Camundongos , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , alfa-Fetoproteínas/metabolismo
7.
Polymers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458373

RESUMO

pncB1 and pncB2 are two putative nicotinic acid phosphoribosyltransferases, playing a role in cofactor salvage and drug resistance in Mycobacterium tuberculosis. Mutations have been reported in first- and second-line drug targets, causing resistance. However, pncB1 and pncB2 mutational data are not available, and neither of their mutation effects have been investigated in protein structures. The current study has been designed to investigate mutations and also their effects on pncB1 and pncB2 structures. A total of 287 whole-genome sequenced data of drug-resistant Mycobacterium tuberculosis isolates from Khyber Pakhtunkhwa of Pakistan were retrieved (BioSample PRJEB32684, ERR2510337-ERR2510445, ERR2510546-ERR2510645) from NCBI. The genomic data were analyzed for pncB1 and pncB2 mutations using PhyResSE. All the samples harbored numerous synonymous and non-synonymous mutations in pncB1 and pncB2 except one. Mutations Pro447Ser, Arg286Arg, Gly127Ser, and delTCAGGCCG1499213>1499220 in pncB1 are novel and have not been reported in literature and TB databases. The most common non-synonymous mutations exhibited stabilizing effects on the pncB1 structure. Moreover, 36 out of 287 samples harbored two non-synonymous and 34 synonymous mutations in pncB2 among which the most common was Phe204Phe (TTT/TTC), present in 8 samples, which may have an important effect on the usage of specific codons that may increase the gene expression level or protein folding effect. Mutations Ser120Leu and Pro447Ser, which are present in the loop region, exhibited a gain in flexibility in the surrounding residues while Gly429Ala and Gly127Ser also demonstrated stabilizing effects on the protein structure. Inhibitors designed based on the most common pncB1 and pncB2 mutants may be a more useful strategy in high-burden countries. More studies are needed to elucidate the effect of synonymous mutations on organism phenotype.

8.
Front Microbiol ; 13: 893603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711743

RESUMO

The definitive screening design (DSD) and artificial neural network (ANN) were conducted for modeling the biosorption of Co(II) by Pseudomonas alcaliphila NEWG-2. Factors such as peptone, incubation time, pH, glycerol, glucose, K2HPO4, and initial cobalt had a significant effect on the biosorption process. MgSO4 was the only insignificant factor. The DSD model was invalid and could not forecast the prediction of Co(II) removal, owing to the significant lack-of-fit (P < 0.0001). Decisively, the prediction ability of ANN was accurate with a prominent response for training (R2 = 0.9779) and validation (R2 = 0.9773) and lower errors. Applying the optimal levels of the tested variables obtained by the ANN model led to 96.32 ± 2.1% of cobalt bioremoval. During the biosorption process, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy, and scanning electron microscopy confirmed the sorption of Co(II) ions by P. alcaliphila. FTIR indicated the appearance of a new stretching vibration band formed with Co(II) ions at wavenumbers of 562, 530, and 531 cm-1. The symmetric amino (NH2) binding was also formed due to Co(II) sorption. Interestingly, throughout the revision of publications so far, no attempt has been conducted to optimize the biosorption of Co(II) by P. alcaliphila via DSD or ANN paradigm.

9.
Cells ; 11(17)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36078031

RESUMO

Root nodule formation in many leguminous plants is known to be affected by endogen ous and exogenous factors that affect formation, development, and longevity of nodules in roots. Therefore, it is important to understand the role of the genes which are involved in the regulation of the nodulation signaling pathway. This study aimed to investigate the effect of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. The study aimed to clarify not only the impact of over-expressing five terpene synthesis genes isolated from G. max and Salvia guaranitica on soybean nodulation signaling pathway, but also on the strigolactones pathway. The obtained results revealed that the over expression of GmFDPS, GmGGPPS, SgGPS, SgFPPS, and SgLINS genes enhanced the root nodule numbers, fresh weight of nodules, root, and root length. Moreover, the terpene content in the transgenic G. max hairy roots was estimated. The results explored that the monoterpenes, sesquiterpenes and diterpenes were significantly increased in transgenic soybean hairy roots in comparison with the control. Our results indicate the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. The study provides novel insights for understanding the epistatic relationship between terpenoids, root development, and nodulation in soybean.


Assuntos
Glycine max , Nodulação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Glycine max/genética , Glycine max/metabolismo , Terpenos/metabolismo
10.
Front Microbiol ; 12: 731262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745034

RESUMO

The current study reported a new keratinolytic bacterium, which was characterized as Bacillus paramycoides and identified by 16S rRNA, and the sequence was then deposited in the GenBank (MW876249). The bacterium was able to degrade the insoluble chicken feather keratin (CFK) into amino acids (AA) through the keratinase system. The statistical optimization of the biodegradation process into AA was performed based on the Plackett-Burman design and rotatable central composite design (RCCD) on a simple solid-state fermentation medium. The optimum conditions were temperature, 37°C, 0.547 mg KH2PO4, 1.438 mg NH4Cl, and 11.61 days of incubation. Innovatively, the degradation of the CFK process was modeled using the artificial neural network (ANN), which was better than RCCD in modeling the biodegradation process. Differentiation of the AA by high-performance liquid chromatography (HPLC) revealed the presence of 14 AA including essential and non-essential ones; proline and aspartic acids were the most dominant. The toxicity test of AA on the HepG2 cell line did not show any negative effect either on the cell line or on the morphological alteration. B. paramycoides ZW-5 is a new eco-friendly tool for CFK degradation that could be optimized by ANN. However, additional nutritional trials are encouraged on animal models.

11.
Plants (Basel) ; 10(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34579503

RESUMO

Oxidative stress is imparted by a varying range of environmental factors involving heavy metal stress. Thus, the mechanisms of antioxidant resistance may advance a policy to improve metal tolerance. Lead as a toxic heavy metal negatively affects the metabolic activities and growth of medicinal and aromatic plants. This investigation aimed to assess the function of 5-aminolevulinic acid (ALA) in the alleviation of Pb stress in sage plants (Salvia officinalis L.) grown either hydroponically or in pots. Various concentrations of Pb (0, 100, 200, and 400 µM) and different concentrations of ALA (0, 10, and 20 mg L-1) were tested. This investigation showed that Pb altered the physiological parameters. Pb stress differentially reduced germination percentage and protein content compared to control plants. However, lead stress promoted malondialdehyde (MDA) and H2O2 contents in the treated plants. Also, lead stress enhanced the anti-oxidative enzyme activities; ascorbate peroxidase superoxide, dismutase, glutathione peroxidase, and glutathione reductase in Salvia plants. ALA application enhanced the germination percentage and protein content compared to their corresponding controls. Whereas, under ALA application MDA and H2O2 contents, as well as the activities of SOD, APX, GPX, and GR, were lowered. These findings suggest that ALA at the 20 mgL-1 level protects the Salvia plant from Pb stress. Therefore, the results recommend ALA application to alleviate Pb stress.

12.
Front Plant Sci ; 12: 783269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003167

RESUMO

In legumes, many endogenous and environmental factors affect root nodule formation through several key genes, and the regulation details of the nodulation signaling pathway are yet to be fully understood. This study investigated the potential roles of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. We characterized six terpenoid synthesis genes from Salvia officinalis by overexpressing SoTPS6, SoNEOD, SoLINS, SoSABS, SoGPS, and SoCINS in soybean hairy roots and evaluating root growth and nodulation, and the expression of strigolactone (SL) biosynthesis and early nodulation genes. Interestingly, overexpression of some of the terpenoid and terpene genes increased nodule numbers, nodule and root fresh weight, and root length, while others inhibited these phenotypes. These results suggest the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. This study provides novel insights into epistatic interactions between terpenoids, root development, and nodulation in soybean root biology and open new avenues for soybean research.

13.
PLoS One ; 14(10): e0223980, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31626638

RESUMO

Controlled inflammatory responses of myeloid cells recruited to wounds are essential for effective repair. In diabetes, the inflammatory response is prolonged and augmented over time, with increased myeloid cells present in the wound that fail to switch from a pro-inflammatory phenotype to a pro-healing phenotype. These defects lead to delayed angiogenesis and tissue repair and regeneration, and contribute to chronic wound formation. In mouse models of diabetes, this aberrant phenotype is partially mediated by stable intrinsic changes to the developing myeloid cells in the bone marrow, affecting their maturation and polarization potential. Previous studies have shown that freshly isolated peripheral blood mononuclear cells from diabetic patients are more inflammatory than non-diabetic counterparts. However, the phenotype of macrophages from human diabetic patients has not been well characterized. Here we show that diabetic-derived human macrophages cultured for 6 days in vitro maintain a pro-inflammatory priming and hyperpolarize to a pro-inflammatory phenotype when stimulated with LPS and INF-É£ or TNF. In addition, diabetic-derived macrophages show maturation defects associated with reduced expression of the RUNX1 transcription factor that promotes myeloid cell development. Targeting intrinsic defects in myeloid cells by protein transduction of the Hoxa3 transcription factor can rescue some inflammation and maturation defects in human macrophages from diabetic patients via upregulation of Runx1. In addition, Hoxa3 can modulate the levels of p65/NF-κB and histone acetyltransferase and deacetylase activity, as well as inhibit acetylation of the TNF promoter. Altogether, these results show a link between myeloid cell maturation and inflammatory responses, and that diabetes induces intrinsic changes to human myeloid cells that are maintained over time, as well as potentially therapeutic Hoxa3-mediated mechanisms of controlling the inflammatory response in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Proteínas de Homeodomínio/metabolismo , Macrófagos/metabolismo , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Meios de Cultivo Condicionados/química , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Humanos , Interleucina-6/análise , Leucócitos Mononucleares/citologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Fatores de Necrose Tumoral/análise , Fatores de Necrose Tumoral/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
J Invest Dermatol ; 139(7): 1583-1592, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30703358

RESUMO

Chronic inflammation is a hallmark of impaired healing in a plethora of tissues, including skin, and is associated with aging and diseases such as diabetes. Diabetic chronic skin wounds are characterized by excessive myeloid cells that display an aberrant phenotype, partially mediated by stable intrinsic changes induced during hematopoietic development. However, the relative contribution of myeloid cell-intrinsic factors to chronic inflammation versus aberrant signals from the local environmental was unknown. Moreover, identification of myeloid cell intrinsic factors that contribute to chronic inflammation in diabetic wounds remained elusive. Here we show that Gr-1+CD11b+ myeloid cells are retained specifically within the presumptive granulation tissue region of the wound at a higher density in diabetic mice and associate with endothelial cells at the site of injury with a higher frequency than in nondiabetic mice. Adoptive transfer of myeloid cells demonstrated that aberrant wound retention is due to myeloid cell intrinsic factors and not the local environment. RNA sequencing of bone marrow and wound-derived myeloid cells identified Selplg as a myeloid cell intrinsic factor that is deregulated in chronic wounds. In vivo blockade of this protein significantly accelerated wound healing in diabetic mice and may be a potential therapeutic target in chronic wounds and other chronic inflammatory diseases.


Assuntos
Inflamação/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Cicatrização , Transferência Adotiva , Animais , Células da Medula Óssea/metabolismo , Antígeno CD11b/genética , Doença Crônica , Diabetes Mellitus Experimental , Células Endoteliais/metabolismo , Feminino , Masculino , Camundongos , Fenótipo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa