Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Hum Genomics ; 18(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173046

RESUMO

BACKGROUND: Clopidogrel is a widely prescribed prodrug that requires activation via specific pharmacogenes to exert its anti-platelet function. Genetic variations in the genes encoding its transporter, metabolizing enzymes, and target receptor lead to variability in its activation and platelet inhibition and, consequently, its efficacy. This variability increases the risk of secondary cardiovascular events, and therefore, some variations have been utilized as genetic biomarkers when prescribing clopidogrel. METHODS: Our study examined clopidogrel-related genes (CYP2C19, ABCB1, PON1, and P2Y12R) in a cohort of 298 healthy Emiratis individuals. The study used whole exome sequencing (WES) data to comprehensively analyze pertinent variations of these genes, including their minor allele frequencies, haplotype distribution, and their resulting phenotypes. RESULTS: Our data shows that approximately 37% (n = 119) of the cohort are likely to benefit from the use of alternative anti-platelet drugs due to their classification as intermediate or poor CYP2C19 metabolizers. Additionally, more than 50% of the studied cohort exhibited variants in ABCB1, PON1, and P2YR12 genes, potentially influencing clopidogrel's transport, enzymatic clearance, and receptor performance. CONCLUSIONS: Recognizing these alleles and genotype frequencies may explain the clinical differences in medication response across different ethnicities and predict adverse events. Our findings underscore the need to consider genetic variations in prescribing clopidogrel, with potential implications for implementing personalized anti-platelet therapy among Emiratis based on their genetic profiles.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores da Agregação Plaquetária , Humanos , Clopidogrel/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Citocromo P-450 CYP2C19/genética , Ticlopidina/uso terapêutico , Ticlopidina/farmacologia , Emirados Árabes Unidos , Hidrocarboneto de Aril Hidroxilases/genética , Genótipo , Arildialquilfosfatase/genética
2.
BMC Bioinformatics ; 24(1): 354, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735350

RESUMO

BACKGROUND: Plummeting DNA sequencing cost in recent years has enabled genome sequencing projects to scale up by several orders of magnitude, which is transforming genomics into a highly data-intensive field of research. This development provides the much needed statistical power required for genotype-phenotype predictions in complex diseases. METHODS: In order to efficiently leverage the wealth of information, we here assessed several genomic data science tools. The rationale to focus on on-premise installations is to cope with situations where data confidentiality and compliance regulations etc. rule out cloud based solutions. We established a comprehensive qualitative and quantitative comparison between BCFtools, SnpSift, Hail, GEMINI, and OpenCGA. The tools were compared in terms of data storage technology, query speed, scalability, annotation, data manipulation, visualization, data output representation, and availability. RESULTS: Tools that leverage sophisticated data structures are noted as the most suitable for large-scale projects in varying degrees of scalability in comparison to flat-file manipulation (e.g., BCFtools, and SnpSift). Remarkably, for small to mid-size projects, even lightweight relational database. CONCLUSION: The assessment criteria provide insights into the typical questions posed in scalable genomics and serve as guidance for the development of scalable computational infrastructure in genomics.


Assuntos
Ciência de Dados , Genômica , Mapeamento Cromossômico , Bases de Dados Factuais , Análise de Sequência de DNA
3.
BMC Cardiovasc Disord ; 23(1): 137, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922773

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death in the world. In the United Arab Emirates (UAE), it accounts for 40% of mortality. CVD is caused by multiple cardiometabolic risk factors (CRFs) including obesity, dysglycemia, dyslipidemia, hypertension and central obesity. However, there are limited studies focusing on the CVD risk burden among young Emirati adults. This study investigates the burden of CRFs in a sample of young Emiratis, and estimates the distribution in relation to sociodemographic and behavioral determinants. METHODS: Data was used from the baseline data of the UAE Healthy Future Study volunteers. The study participants were aged 18 to 40 years. The study analysis was based on self-reported questionnaires, anthropometric and blood pressure measurements, as well as blood analysis. RESULTS: A total of 5167 participants were included in the analysis; 62% were males and the mean age of the sample was 25.7 years. The age-adjusted prevalence was 26.5% for obesity, 11.7% for dysglycemia, 62.7% for dyslipidemia, 22.4% for hypertension and 22.5% for central obesity. The CRFs were distributed differently when compared within social and behavioral groups. For example, obesity, dyslipidemia and central obesity in men were found higher among smokers than non-smokers (p < 0.05). And among women with lower education, all CRFs were reported significantly higher than those with higher education, except for hypertension. Most CRFs were significantly higher among men and women with positive family history of common non-communicable diseases. CONCLUSIONS: CRFs are highly prevalent in the young Emirati adults of the UAE Healthy Future Study. The difference in CRF distribution among social and behavioral groups can be taken into account to target group-specific prevention measures.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Hipertensão , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Emirados Árabes Unidos/epidemiologia , Obesidade Abdominal/diagnóstico , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/complicações , Fatores de Risco Cardiometabólico , Prevalência , Obesidade/epidemiologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Hipertensão/complicações , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Dislipidemias/complicações , Fatores de Risco
4.
Chem Eng J ; 453: 139750, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36267422

RESUMO

Quantitative RT-PCR (qRT-PCR) is the most commonly used diagnostic tool for SARS-CoV-2 detection during the COVID-19 pandemic. Despite its sensitivity and accuracy, qRT-PCR is a time-consuming method that requires expensive laboratories with highly trained personnel. In this work, on-site detection of SARS-CoV-2 in municipal wastewater was investigated for the first time. The wastewater was unprocessed and did not require any prefiltration, prior spiking with virus, or viral concentration in order to be suitable for use with the biosensor. The prototype reported here is a reduced graphene oxide (rGO)-based biosensor for rapid, sensitive and selective detection of SARS-CoV-2. The biosensor achieved a limit of detection (LOD) of 0.5 fg/mL in phosphate-buffered saline (PBS) and exhibited specificity when exposed to various analytes. The response time was measured to be around 240 ms. To further explore the capabilities of the biosensor in real clinical and municipal wastewater samples, three different tests were performed to determine the presence or absence of the virus: (i) qRT-PCR, (ii) a rapid antigen-based commercially available test (COVID-19 Test Strips), and (iii) the biosensor constructed and reported here. Taken together, our results demonstrate that a biosensor that can detect SARS-CoV-2 in clinical samples as well as unfiltered and unprocessed municipal wastewater is feasible.

5.
J Gene Med ; 24(4): e3407, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978128

RESUMO

BACKGROUND: Several genomic loci of type 2 diabetes (T2D) nominated in genome-wide association studies (GWAS) have been suggested to regulate metabolism in muscle. However, a large portion of the genetic risk and the underlying regulation remain unexplained. The present study aimed to localize the potentially functional regions or genes at juxtaposed with another zinc finger protein 1 (JAZF1) locus and interpret their possible biological mechanisms in the muscle of T2D. METHODS: Seven GWAS datasets including 21,897 T2D patients and 32,710 healthy controls of 772 SNPs within JAZF1 locus were meta-analysed using unconditional logistic regression. The Sherlock and GTEx protal online algorithms were implemented to show the significant colocalizations. Multiple omics data were integrated to predict the potential biological functions of JAZF1-AS1 in muscle. The cis regulation of JAZF1-AS1 was analysed using in vitro cloning in Human skeletal muscle cells (HSkMC). RESULTS: With a cross-population meta-analysis of seven GWAS, we identified a linkage disequilibrium (LD) block within intron 1 of JAZF1 that was significantly associated with T2D (false discovery rate < 0.05). The colocalization analysis showed a significant association between genetically determined expression of JAZF1 in skeletal muscle and T2D with a strong probability of colocalization (PP4 = 75.09%). This region also encodes the upstream regulatory region of the antisense non-coding RNA JAZF1-AS1. Expression-quantitative trait loci analysis detected a regulatory SNP within this LD block, rs864745, which is associated with the expression of JAZF1-AS1 and JAZF1. With in vitro cloning, we further reported the role of JAZF1-AS1 in cis-regulating JAZF1 by directly forming RNA double strands. Downregulation of JAZF1, caused by JAZF1-AS1 depletion, inhibited the glucose uptake and lipid oxidation in skeletal muscle. CONCLUSIONS: The present study proposes a strategy for identifying a novel T2D gene at the reported locus and generating a model in which polymorphisms at JAZF1 influence T2D risk through antisense-mediated gene regulation.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA não Traduzido
6.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409166

RESUMO

Fat mass and obesity-associated protein (FTO) is the first reported RNA N6-methyladenosine (m6A) demethylase in eukaryotic cells. m6A is considered as the most abundant mRNA internal modification, which modulates several cellular processes including alternative splicing, stability, and expression. Genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) within FTO to be associated with obesity, as well as cancer including endometrial cancer, breast cancer, pancreatic cancer, and melanoma. Since the initial classification of FTO as an m6A demethylase, various studies started to unravel a connection between FTO's demethylase activity and the susceptibility to obesity on the molecular level. FTO was found to facilitate adipogenesis, by regulating adipogenic pathways and inducing pre-adipocyte differentiation. FTO has also been investigated in tumorigenesis, where emerging studies suggest m6A and FTO levels are dysregulated in various cancers, including acute myeloid leukemia (AML), glioblastoma, cervical squamous cell carcinoma (CSCC), breast cancer, and melanoma. Here we review the molecular bases of m6A in tumorigenesis and adipogenesis while highlighting the controversial role of FTO in obesity. We provide recent findings confirming FTO's causative link to obesity and discuss novel approaches using RNA demethylase inhibitors as targeted oncotherapies. Our review aims to confirm m6A demethylation as a risk factor in obesity and provoke new research in FTO and human disorders.


Assuntos
Neoplasias da Mama , Carcinoma de Células Escamosas , Melanoma , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Feminino , Estudo de Associação Genômica Ampla , Humanos , Obesidade/complicações , Obesidade/genética , RNA Mensageiro/genética
7.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408874

RESUMO

One of the most common complications during pregnancy is gestational diabetes mellitus (GDM), hyperglycemia that occurs for the first time during pregnancy. The condition is multifactorial, caused by an interaction between genetic, epigenetic, and environmental factors. However, the underlying mechanisms responsible for its pathogenesis remain elusive. Moreover, in contrast to several common metabolic disorders, molecular research in GDM is lagging. It is important to recognize that GDM is still commonly diagnosed during the second trimester of pregnancy using the oral glucose tolerance test (OGGT), at a time when both a fetal and maternal pathophysiology is already present, demonstrating the increased blood glucose levels associated with exacerbated insulin resistance. Therefore, early detection of metabolic changes and associated epigenetic and genetic factors that can lead to an improved prediction of adverse pregnancy outcomes and future cardio-metabolic pathologies in GDM women and their children is imperative. Several genomic and epigenetic approaches have been used to identify the genes, genetic variants, metabolic pathways, and epigenetic modifications involved in GDM to determine its etiology. In this article, we explore these factors as well as how their functional effects may contribute to immediate and future pathologies in women with GDM and their offspring from birth to adulthood. We also discuss how these approaches contribute to the changes in different molecular pathways that contribute to the GDM pathogenesis, with a special focus on the development of insulin resistance.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Adulto , Criança , Epigenômica , Feminino , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/genética , Gravidez , Resultado da Gravidez
8.
Am J Hum Biol ; 33(1): e23434, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32445548

RESUMO

OBJECTIVE: Type 2 diabetes mellitus (T2DM) has a multifactorial etiology involving a complex interplay between genes and the environment. The prevalence of T2DM among the countries of the Gulf Corporation Council (GCC), including the United Arab Emirates (UAE), ranks among the top 15 in the world. A number of studies have shown an increase in T2DM risk for the "TT" genotype at the rs4506565 and rs12255372 Single Nucleotide Polymorphisms (SNP) of the TCF7L2 gene. However, the association between TCF7L2 and T2DM still needs to be investigated in the UAE population. Therefore, this study analyzed the potential associations with rs4506565 and rs12255372 in UAE subjects. METHODS: For this case-control study, T2DM patients (n = 890) and healthy subjects (n = 686) were genotyped using a Taqman Real-Time PCR assay. Statistical analysis was performed with the resulting data using the R (version 3.3.1) and STATA (version 13) software packages. RESULTS: The rs12255372 SNP was significantly associated with T2DM (OR = 1.16, 95% CI = 1.00-1.34; P = .042). However, no significant association was found for the rs4506565 SNP (P = .120). After gender stratification, a significant association was found for both SNPs in males (Prs4506565 = .009 and Prs12255372 = .021). Interestingly, we found the interaction between the SNP rs4506565 with gender alone (P = .032) and in conjunction with BMI and age (P = .036) confers associations with T2DM. CONCLUSIONS: These findings suggest that the genetic variants of the TCF7L2 gene are associated with an increased susceptibility to T2DM, especially in Emirati males. Our study also highlights the impact of biological and environmental risk factors including age, BMI, and gender on the genetic susceptibility to T2DM.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Predisposição Genética para Doença/epidemiologia , Polimorfismo de Nucleotídeo Único , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Emirados Árabes Unidos/epidemiologia
9.
J Hum Genet ; 65(4): 411-420, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31959871

RESUMO

Genome-wide association studies (GWASs) have identified many genetic variations associated with type 2 diabetes mellitus (T2DM) in Asians, but understanding the functional genetic variants that influence traits is often a complex process. In this study, fine mapping and other analytical strategies were performed to investigate the effects of G protein signaling modulator 1 (GPSM1) on insulin resistance in skeletal muscle. A total of 128 single-nucleotide polymorphisms (SNPs) within GPSM1 were analysed in 21,897 T2DM cases and 32,710 healthy controls from seven GWASs. The SNP rs28539249 in intron 9 of GPSM1 showed a nominally significant association with T2DM in Asians (OR = 1.07, 95% CI = 1.04-1.10, P < 10-4). The GPSM1 mRNA was increased in skeletal muscle and correlated with T2DM traits across obese mice model. An eQTL for the cis-acting regulation of GPSM1 expression in human skeletal muscle was identified for rs28539249, and the increased GPSM1 expression related with T2DM traits within GEO datasets. Another independent Asian cohort showed that rs28539249 is associated with the skeletal muscle expression of CACFD1, GTF3C5, SARDH, and FAM163B genes, which are functionally enriched for endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) pathways. Moreover, rs28539249 locus was predicted to disrupt regulatory regions in human skeletal muscle with enriched epigenetic marks and binding affinity for CTCF. Supershift EMSA assays followed luciferase assays demonstrated the CTCF specifically binding to rs28539249-C allele leading to decreased transcriptional activity. Thus, the post-GWAS annotation confirmed the Asian-specific association of genetic variant in GPSM1 with T2DM, suggesting a role for the variant in the regulation in skeletal muscle.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Inibidores de Dissociação do Nucleotídeo Guanina , Músculo Esquelético/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Povo Asiático , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos
10.
Int J Immunogenet ; 46(3): 152-159, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30892829

RESUMO

The high degree of polymorphism of the HLA system provides suitable genetic markers to study the diversity and migration of different world populations and is beneficial for forensic identification, anthropology, transplantation and disease associations. Although the United Arab Emirates (UAE) population of about nine million people is heterogeneous, information is limited for the HLA class I allele and haplotype frequencies of the Bedouin ethnic group. We performed low-resolution PCR-SSP genotyping of three HLA class I loci at HLA-A, -B and -C for 95 unrelated healthy Bedouins from the cities of Al Ain and Abu Dhabi in the UAE. A total of 54 HLA allele lineages were detected; the most frequent low-resolution allele lineages at each HLA locus were A*02 (0.268), B*51 (0.163) and C*07 (0.216). The inferred estimates for the two most frequent HLA-A and HLA-B haplotypes were HLA-A*02 ~ HLA-B*50 (0.070) and HLA-A*02 ~ HLA-B*51 (0.051), and the most frequent 3-locus haplotype was HLA-A*02 ~ HLA-B*50 ~ HLA-C*06 (0.068). The HLA allele lineage frequencies of the UAE Arabs were compared to those previously reported for 70 other world populations, and a strong genetic similarity was detected between the UAE Arabs and the Saudi Arabians from the west with evidence of a limited gene flow between the UAE Arabs and Pakistani across the Gulf from the east, and the UAE Arabs and Omani from the south of the Gulf Peninsula.


Assuntos
Árabes/genética , Genes MHC Classe I , Frequência do Gene , Haplótipos , Humanos , Emirados Árabes Unidos/etnologia
11.
Int J Immunogenet ; 46(4): 247-262, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31021060

RESUMO

Polymorphic Alu insertions (POALINs) are found throughout the human genome and have been used in various studies to infer geographic origin of human populations. The main aim of this study was to determine the allele and haplotype frequencies of five POALINs, AluHF, AluHG, AluHJ, AluTF and AluMICB, within the major histocompatibility complex (MHC) class I region of 95 UAE Arabs, and correlate their frequencies to those of the HLA-A, HLA-C and HLA-B class I allele lineages. Evolutionary relationships between the POALINs of the Arabs and those previously studied in populations of African, Asian and European descent were compared. At each of the five Alu loci (AluHF, AluHG, AluHJ, AluTF and AluMICB), Alu insertion was designated as Alu(locus)*02 and absence was Alu(locus)*01. The AluHG insertion (AluHG*02) had the highest frequency (0.332), followed by AluHF*02 (0.300), AluHJ*02 (0.263), AluMICB*02 (0.111) and AluTF*02 (0.058). Of the 270 Alu-HLA haplotypes pairs in the UAE Arabs, 110 had no Alu insertion, and 54 had an Alu insertion at >50% per haplotype. An Alu insertion >75% per haplotype was found between AluMICB*02 and HLA-B*14, HLA-B*22, HLA-B*44, HLA-B*55, HLA-B*57 and HLA-B*73, and with HLA-C*01 and HLA-C*18; AluHJ*02 with HLA-A*01, HLA-A*19, HLA-A*24 and HLA-A*32; AluHG*02 with HLA-A*02 and HLA-B*18; and AluHF*02 with HLA-A*10. The genotyped allele and haplotype frequencies of the MHC POALINs in UAE Arabs were compared with the results of 30 previously published Asian, European, American and African populations. Phylogenetic and multidimensional scaling (MDS) analysis of the relative MHC POALINs allele and haplotype frequencies revealed that the UAE Arabs have a similar lineage to Caucasians and the most distant genetic relationship to the Waorani native American population of Ecuador. The structure of both the phylogenetic tree and the MDS analysis supports the Out of Africa theory of human evolution. The nature of the clusters suggests the Arabian Middle East represents a crossroads from which human populations migrated towards Asia in the east and Europe to the north-west.


Assuntos
Elementos Alu/genética , Genes MHC Classe I/genética , Genética Populacional , Antígenos HLA/genética , Povo Asiático , Equador/epidemiologia , Europa (Continente)/epidemiologia , Genes MHC Classe I/imunologia , Genótipo , Antígenos HLA/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Polimorfismo Genético , Emirados Árabes Unidos , População Branca
12.
Int J Obes (Lond) ; 42(7): 1345-1353, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29717269

RESUMO

BACKGROUND: The United Arab Emirates (UAE) is one of the countries most threatened with obesity. Here we investigated associations between hundreds of single-nucleotide polymorphisms (SNPs) and the following obesity indicators: body mass index (BMI), waist circumference (WC), and height. We also investigated the associations between obesity-related genes with type 2 diabetes mellitus (T2DM). METHODS: We tested 87, 58, and 586 SNPs in a previous genome-wide significance level for associations with BMI (n = 880), WC (n = 455), and height (n = 897), respectively. For each trait, we used normally transformed Z scores and tested them with SNPs using linear regression models that incorporated age and gender as covariates. The weighted polygenic risk scores for significant SNPs for each trait were tested with the corresponding Z scores using linear regression models with the same covariates. We further tested 145 obesity loci with T2DM (464 cases, 415 controls) using a logistic regression model including age, gender, and BMI Z scores as covariates. RESULTS: The Mean BMI was 29.39 kg/m2, and mean WC was 103.66 cm. Hypertension and dyslipidemia were common obesity comorbidities (>60%). The best associations for BMI was in FTO, LOC284260 and USP37, and for WC in RFX7 and MYEOV. For height, the best association was in NSD1 followed by MFAP2 and seven other loci. The polygenic scores revealed stronger associations for each trait than individual SNPs; although they could only explain <1% of the traits' Z scores variations. For T2DM, the strongest associations were with the TCF7L2 and MC4R loci (P < 0.01, OR ~1.70), with novel associations detected with KCNK3 and RARB. CONCLUSIONS: In this first study of Arab descendants, we confirmed several known obesity (FTO, USP37, and RFX7), height (NSD1, MFAP2), and T2DM (TCF7L2, MC4R) associations; and report novel associations, like KCNK3 and RARB for T2DM.


Assuntos
Árabes/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único/fisiologia , Adulto , Idoso , Estatura/genética , Índice de Massa Corporal , Estudos Transversais , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/fisiopatologia , Estudos Prospectivos , Fatores de Risco , Emirados Árabes Unidos/epidemiologia , Emirados Árabes Unidos/etnologia , Circunferência da Cintura/genética
13.
J Hum Genet ; 63(4): 533-536, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29410509

RESUMO

Discoveries from the human genome, HapMap, and 1000 genome projects have collectively contributed toward the creation of a catalog of human genetic variations that has improved our understanding of human diversity. Despite the collegial nature of many of these genome study consortiums, which has led to the cataloging of genetic variations of different ethnic groups from around the world, genome data on the Arab population remains overwhelmingly underrepresented. The National Arab Genome project in the United Arab Emirates (UAE) aims to address this deficiency by using Next Generation Sequencing (NGS) technology to provide data to improve our understanding of the Arab genome and catalog variants that are unique to the Arab population of the UAE. The project was conceived to shed light on the similarities and differences between the Arab genome and those of the other ethnic groups.


Assuntos
Árabes/genética , Genética Populacional , Genoma Humano , Genômica , Genômica/métodos , Projeto HapMap , Humanos , Emirados Árabes Unidos
14.
Mol Pharm ; 15(6): 2098-2106, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709194

RESUMO

More than 30 human degenerative diseases result from protein aggregation such as Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Islet amyloid deposits, a hallmark in T2DM, are found in pancreatic islets of more than 90% of T2DM patients. An association between amylin aggregation and reduction in ß-cell mass was also established by post-mortem studies. A strategy in preventing protein aggregation-related disorders is to inhibit the protein aggregation and associated toxicity. In this study, we demonstrated that two inhibitors, lipoic acid and ascorbic acid, significantly inhibited amylin aggregation. Compared to amylin (15 µM) as 100%, lipoic acid and ascorbic acid reduced amylin fibril formation to 42.1 ± 17.2% and 42.9 ± 12.8%, respectively, which is confirmed by fluorescence and TEM images. In cell viability tests, both inhibitors protected RIN-m5f ß-cells from the toxicity of amylin aggregates. At 10:1 molar ratio of lipoic acid to amylin, lipoic acid with amylin increased the cell viability to 70.3%, whereas only 42.8% RIN-m5f ß-cells survived in amylin aggregates. For ascorbic acid, an equimolar ratio achieved the highest cell viability of 63.3% as compared to 42.8% with amylin aggregates only. Docking results showed that lipoic acid and ascorbic acid physically interact with amylin amyloidogenic region (residues Ser20-Ser29) via hydrophobic interactions; hence reducing aggregation levels. Therefore, lipoic acid and ascorbic acid prevented amylin aggregation via hydrophobic interactions, which resulted in the prevention of cell toxicity in vitro.


Assuntos
Ácido Ascórbico/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Ácido Tióctico/farmacologia , Animais , Ácido Ascórbico/química , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Ácido Tióctico/química
15.
BMC Public Health ; 18(1): 101, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304844

RESUMO

BACKGROUND: The United Arab Emirates (UAE) is faced with a rapidly increasing burden of non-communicable diseases including obesity, diabetes, and cardiovascular disease. The UAE Healthy Future study is a prospective cohort designed to identify associations between risk factors and these diseases amongst Emiratis. The study will enroll 20,000 UAE nationals aged ≥18 years. Environmental and genetic risk factors will be characterized and participants will be followed for future disease events. As this was the first time a prospective cohort study was being planned in the UAE, a pilot study was conducted in 2015 with the primary aim of establishing the feasibility of conducting the study. Other objectives were to evaluate the implementation of the main study protocols, and to build adequate capacity to conduct advanced clinical laboratory analyses. METHODS: Seven hundred sixty nine UAE nationals aged ≥18 years were invited to participate voluntarily in the pilot study. Participants signed an informed consent, completed a detailed questionnaire, provided random blood, urine, and mouthwash samples and were assessed for a series of clinical measures. All specimens were transported to the New York University Abu Dhabi laboratories where samples were processed and analyzed for routine chemistry and hematology. Plasma, serum, and a small whole blood sample for DNA extraction were aliquoted and stored at -80 °C for future analyses. RESULTS: Overall, 517 Emirati men and women agreed to participate (68% response rate). Of the total participants, 495 (95.0%), 430 (82.2%), and 492 (94.4%), completed the questionnaire, physical measurements, and provided biological samples, respectively. CONCLUSIONS: The pilot study demonstrated the feasibility of recruitment and completion of the study protocols for the first large-scale cohort study designed to identify emerging risk factors for the major non-communicable diseases in the region.


Assuntos
Doenças não Transmissíveis/epidemiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Fatores de Risco , Inquéritos e Questionários , Emirados Árabes Unidos/epidemiologia , Adulto Jovem
16.
Ann Hum Biol ; 44(8): 738-746, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28948851

RESUMO

BACKGROUND: The United Arab Emirates (UAE) is positioned at the crossroads of human migration out of Africa and through to Asia and Europe. AIM: To compare the degree of genetic diversity of the Arabian UAE population with populations in other countries from the Middle East, South Asia and North Africa. SUBJECTS AND METHODS: Twenty-seven Y-STR were analysed in 217 individuals. Y-STR haplotypes from this study were compared to population data stored in YHRD, using MDS and AMOVA. RESULTS: Two hundred and twelve haplotypes were observed in the 217 individuals studied. Although the reduction in Y-STR loci from 27 to 17 resulted in a decrease in discriminatory power, comparisons of populations were possible. The UAE population clustered closer with other populations of the Middle East. The South Asian and North African populations were separated by Middle Eastern populations in between both clusters. CONCLUSION: This is the first study to report the diversity of a population of the Arabian Peninsula using 27 Y-STR. MDS plots show that Middle Eastern populations are positioned in the centre, with African, Asian and European populations around the Arab population cluster. The findings of this study are consistent with this region being at the epicentre of human migration between continents.


Assuntos
Cromossomos Humanos Y/genética , Variação Genética , Haplótipos/genética , África do Norte , Árabes/genética , Ásia Ocidental , Humanos , Masculino , Emirados Árabes Unidos
18.
MethodsX ; 12: 102582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357632

RESUMO

Control and prevention of environmental pollution have emerged as paramount global concerns. Anthropogenic activities, such as industrial discharges, agricultural runoff, and improper waste disposal, introduce a wide range of contaminants into various ecosystems. These pollutants encompass organic and inorganic compounds, particulates, microorganisms, and disinfection by-products, posing severe threats to human health, ecosystems, and the environment. Effective monitoring methods are indispensable for assessing environmental quality, identifying pollution sources, and implementing remedial measures. This paper suggests that the development and utilization of highly advanced analytical tools are both essential for the analysis of contaminants in water samples, presenting a foundational hypothesis for the review. This paper comprehensively reviews the development and utilization of highly advanced analytical tools which is mandatory for the analysis of contaminants in water samples. Depending on the specific pollutants being studied, the choice of analytical methods widely varies. It also reveals insights into the diverse applications and effectiveness of these methods in assessing water quality and contaminant levels. By emphasizing the critical role of the reviewed monitoring methods, this review seeks to deepen the understanding of pollution challenges and inspire innovative monitoring solutions that contribute to a cleaner and more sustainable global environment.•Urgent global concerns: control and prevention of pollution from diverse sources.•Varied contaminants, diverse methods: comprehensive review of analytical tools.•Inspiring a sustainable future: innovative monitoring for a cleaner environment.

19.
Curr Vasc Pharmacol ; : e260124226224, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284696

RESUMO

BACKGROUND: Statins are the most prescribed lipid-lowering drugs worldwide. The associated adverse events, especially muscle symptoms, have been frequently reported despite their perceived safety. Three pharmacogenes, the solute carrier organic anion transporter family member 1B1 (SLCO1B1), ATP-binding cassette subfamily G member 2 (ABCG2), and cytochrome P450 2C9 (CYP2C9) are suggested as safety biomarkers for statins. The Clinical Pharmacogenomic Implementation Consortium (CPIC) issued clinical guidelines for statin use based on these three genes. OBJECTIVES: The present study aimed to examine variants in these pharmacogenes to predict the safety of statin use among the Emirati population. METHODS: Analyzing 242 whole exome sequencing data at the three genes enabled the determination of the frequencies of the single nucleotide polymorphisms (SNPs), annotating the haplotypes and the predicted functions of their proteins. RESULTS: In our cohort, 29.8% and 5.4% had SLCO1B1 decreased and poor function, respectively. The high frequency warns of the possibility of significant side effects of some statins and the importance of pharmacogenomic testing. We found a low frequency (6%) of the ABCG2:rs2231142 variant, which indicates the low probability of Emirati patients being recommended against higher rosuvastatin doses compared with other populations with higher frequencies of this variant. In contrast, we found high frequencies of the functionally impaired CYP2C9 alleles, which makes fluvastatin a less favorable choice. CONCLUSION: Among the sparse studies available, the present one demonstrates all SLCO1B1 and CYP2C9 function-impairing alleles among Emiratis. We highlighted how population-specific pharmacogenomic data can predict safer choices of statins, especially in understudied populations.

20.
Sci Rep ; 14(1): 3392, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337023

RESUMO

The Human leukocyte antigen (HLA) molecules are central to immune response and have associations with the phenotypes of various diseases and induced drug toxicity. Further, the role of HLA molecules in presenting antigens significantly affects the transplantation outcome. The objective of this study was to examine the extent of the diversity of HLA alleles in the population of the United Arab Emirates (UAE) using Next-Generation Sequencing methodologies and encompassing a larger cohort of individuals. A cohort of 570 unrelated healthy citizens of the UAE volunteered to provide samples for Whole Genome Sequencing and Whole Exome Sequencing. The definition of the HLA alleles was achieved through the application of the bioinformatics tools, HLA-LA and xHLA. Subsequently, the findings from this study were compared with other local and international datasets. A broad range of HLA alleles in the UAE population, of which some were previously unreported, was identified. A comparison with other populations confirmed the current population's unique intertwined genetic heritage while highlighting similarities with populations from the Middle East region. Some disease-associated HLA alleles were detected at a frequency of > 5%, such as HLA-B*51:01, HLA-DRB1*03:01, HLA-DRB1*15:01, and HLA-DQB1*02:01. The increase in allele homozygosity, especially for HLA class I genes, was identified in samples with a higher level of genome-wide homozygosity. This highlights a possible effect of consanguinity on the HLA homozygosity. The HLA allele distribution in the UAE population showcases a unique profile, underscoring the need for tailored databases for traditional activities such as unrelated transplant matching and for newer initiatives in precision medicine based on specific populations. This research is part of a concerted effort to improve the knowledge base, particularly in the fields of transplant medicine and investigating disease associations as well as in understanding human migration patterns within the Arabian Peninsula and surrounding regions.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Humanos , Emirados Árabes Unidos , Frequência do Gene , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade/genética , Sequenciamento de Nucleotídeos em Larga Escala , Haplótipos , Alelos , Cadeias HLA-DRB1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa