Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Chemistry ; 29(27): e202300250, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36958938

RESUMO

In this study, a highly air stable and eco-friendly methyl ammonium bismuth iodide (MA3 Bi2 I9 ) perovskite-like material has been prepared. After physiochemical characterizations, the synthesized MA3 Bi2 I9 was utilized as photo-catalyst towards hydrogen production. It is important to design and synthesize lead (Pb)-free perovskite-like material (MA3 Bi2 I9 ) for photo-catalytic hydrogen-production applications. The synthesized MA3 Bi2 I9 exhibits excellent photo-catalytic hydrogen generation with a production rate of 11.43 µmolg-1 h-1 . In the presence of a platinum co-catalyst, the hydrogen production rate further increases to 172.44 µmolg-1 h-1 . The MA3 Bi2 I9 photo-catalyst also demonstrates excellent cyclic stability.

2.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005229

RESUMO

The leaves of the Aegle marmelos plant were used for the green synthesis of copper oxide nanoparticles and further characterized by different techniques, including (Ultra Violet-Visible) UV-Vis, Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The UV-Vis showed a peak at 330 nm, which may be due to the Surface Plasmon Resonance phenomenon. XRD analysis showed the crystalline nature of copper oxide nanoparticles (CuO NPs). In contrast, SEM showed that nanoparticles were not aggregated or clumped, EDX showed the presence of elemental copper., and further, the TEM analysis revealed the average particle size of copper oxide nanoparticles to be 32 nm. The Minimum Inhibitory Concentration (MIC) for Escherichia coli (E. coli) and Staphylococcusaureus (S. aureus) was found to be 400 µg/mL, whereas for Candida albicans (C. albicans) and Candida dubliniensis (C. dubliniensis) it was 800 µg/mL. The zone of inhibition in the well diffusion assay showed the antimicrobial activity of copper oxide nanoparticles, and it also showed that as the concentration of copper oxide nanoparticles increased, the zone of inhibition also increased. Further, the electron microscopic view of the interaction between copper oxide nanoparticles and C. albicans cells showed that CuO NPs were internalized and attached to the cell membrane, which caused changes in the cellular structure and caused deformities which eventually led to cell death. The prepared CuO NPs showed significant photocatalytic degradation of organic dyes in the presence of sunlight.


Assuntos
Aegle , Nanopartículas Metálicas , Antibacterianos/química , Cobre/química , Nanopartículas Metálicas/química , Escherichia coli , Staphylococcus aureus , Extratos Vegetais/química , Óxidos , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Arch Pharm (Weinheim) ; 355(5): e2100443, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35137966

RESUMO

A new protocol for the N-alkylation of amines with alcohols for the synthesis of tertiary amines in the presence of MnCl2 as a catalyst, under microwave conditions, is described. The advantages of this protocol include stable reaction profiles, a wide substrate variety, excellent yields, low cost, high yields, and easy workup conditions. The anticancer efficacy of all the synthesized compounds was tested in vitro against various cancer cell lines, such as MCF-7, MDA-MB-231 (human breast), HT-29, HCT 116 (colon cancer), A549 (human lung carcinoma), and Vero cells. Among the screened compounds, 3e, 3h, and 3i demonstrated potent anticancer activity, with compound 3h surpassing the reference drug cisplatin against A549, MCF7, MDA-MB-231, and HCT116 cancer cells. The introduction of an electron-withdrawing group on the phenyl ring resulted in increased anticancer activity. The most potent compounds, 3e, 3h, and 3i, were tested against VEGFR-2, HER2, and EGFR in multikinase inhibition assays, with compounds 3h and 3i showing improved potency against the HER2 kinase. The compounds formed two H-bonds with amino acids, indicating that they had a high affinity for the target HER2 kinase (PDB ID: 3RCD), according to the docking analysis. The absorption, distribution, metabolism, excretion, and toxicity properties of the optimized analogs were also assessed in vitro, enabling the discovery of promising anticancer agents. Finally, the B3LYP level was used to measure density functional theory geometry optimization and the related quantum parameters for the active compounds.


Assuntos
Aminas , Antineoplásicos , Álcoois/farmacologia , Alquilação , Aminas/farmacologia , Animais , Catálise , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Micro-Ondas , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Células Vero
4.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615419

RESUMO

Recently, the simulation of perovskite solar cells (PSCs) via SCAPS-1D has been widely reported. In this study, we adopted SCAPS-1D as a simulation tool for the numerical simulation of lead-free (Pb-free) PSCs. We used methyl ammonium germanium iodide (MAGeI3) as a light absorber, zinc oxysulphide (ZnOS) as an electron transport layer (ETL), and spiro-OMeTAD as a hole transport layer. Further, the thickness of the ZnOS, MAGeI3, and spiro-OMeTAD layers was optimized. The optimal thicknesses of the ZnOS, MAGeI3, and spiro-OMeTAD layers were found to be 100 nm, 550 nm, and 100 nm, respectively. The optimized MAGeI3-based PSCs exhibited excellent power conversion efficiency (PCE) of 21.62%, fill factor (FF) of 84.05%, and Jsc of 14.51 mA/cm2. A fantastic open circuit voltage of 1.77 V was also obtained using SCAPS-1D. We believe that these theoretically optimized parameters and conditions may help improve the experimental efficiency of MAGeI3-based PSCs in the future.

5.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296735

RESUMO

The by-product of the previous transesterification, glycerol was utilised as an acid catalyst precursor for biodiesel production. The crude glycerol was treated through the sulfonation method with sulfuric acid and chlorosulfonic acid in a reflux batch reactor giving solid glycerol-SO3H and glycerol-ClSO3H, respectively. The synthesised acidic glycerol catalysts were characterised by various analytical techniques such as thermalgravimetric analyser (TGA), infrared spectroscopy, surface properties adsorption-desorption by nitrogen gas, ammonia-temperature programmed desorption (NH3-TPD), X-ray diffraction spectroscopy (XRD), elemental composition analysis by energy dispersive spectrometer (EDX) and surface micrographic morphologies by field emission electron microscope (FESEM). Both glycerol-SO3H and glycerol-ClSO3H samples exhibited mesoporous structures with a low surface area of 8.85 mm2/g and 4.71 mm2/g, respectively, supported by the microscopic image of blockage pores. However, the acidity strength for both catalysts was recorded at 3.43 mmol/g and 3.96 mmol/g, which is sufficient for catalysing PFAD biodiesel at the highest yield. The catalytic esterification was optimised at 96.7% and 98.2% with 3 wt.% of catalyst loading, 18:1 of methanol-PFAD molar ratio, 120 °C, and 4 h of reaction. Catalyst reusability was sustained up to 3 reaction cycles due to catalyst deactivation, and the insight investigation of spent catalysts was also performed.


Assuntos
Biocombustíveis , Glicerol , Esterificação , Metanol , Amônia , Óleos de Plantas/química , Catálise , Ácidos Graxos , Nitrogênio
6.
Bioorg Chem ; 110: 104696, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33652343

RESUMO

Twelve heterocyclic compounds were prepared using the condensation of hydroxymethanol pyrazole derivatives with different primary aminesas example 2-aminothiazole and 1-aminobenzotriazole to have a diverse productin good yield up to 97%. Those ligands were tested against Fusarium oxysporum f. sp. Albedinis fungi (BAYOUD Disease) with IC50 = 25.6-33.2 µg/ml. After experiments, theoretical investigations were done as DFT study to know the ligands molecular reactivity and the-ligandprotein- docking study to know the possible binding between the prepared ligands with two biological targets: FGB1 (Fusarium oxysporum Guanine nucleotide-binding protein beta subunitprimary amino acid sequence) and Fophy (Fusarium oxysporum phytase domain enzyme). Of all the obtained results, the experimental ones were well correlated with the theoretical with the most common thing between those compounds is (Nδ--Nδ+) which is the antifungal pharmacophore as proposed pincers for Foa inhibition. From docking studies over FGB1 and Fophy, the ligand 9 has the best binding energy of -6.4872 kcal/mol in FGB1 active site and -5.5282 kcal/mol in Fophy active site, but better correlation with Fophy than FGB1 which is followed by PLIF graph to get that Arg116, Arg120 and Lys336 are the vital amino acids of fophy protein based the study over the chosen active site.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Desenho de Fármacos , Fusarium/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/farmacologia , Teoria da Densidade Funcional , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica
7.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799355

RESUMO

Biocompatible tryptophan-derived copper (1) and zinc (2) complexes with norharmane (ß-carboline) were designed, synthesized, characterized, and evaluated for the potential anticancer activity in vitro and in vivo. The in vitro cytotoxicity of both complexes 1 and 2 were assessed against two cancerous cells: (human breast cancer) MCF7 and (liver hepatocellular cancer) HepG2 cells with a non-tumorigenic: (human embryonic kidney) HEK293 cells. The results exhibited a potentially decent selectivity of 1 against MCF7 cells with an IC50 value of 7.8 ± 0.4 µM compared to 2 (less active, IC50 ~ 20 µM). Furthermore, we analyzed the level of glutathione, lipid peroxidation, and visualized ROS generation to get an insight into the mechanistic pathway and witnessed oxidative stress. These in vitro results were ascertained by in vivo experiments, which also supported the free radical-mediated oxidative stress. The comet assay confirmed the oxidative stress that leads to DNA damage. The histopathology of the liver also ascertained the low toxicity of 1.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carbolinas/farmacologia , Cobre/farmacologia , Triptofano/farmacologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Zinco/farmacologia
8.
J Mol Liq ; 324: 115134, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33390634

RESUMO

Ripretinib is a recently developed drug for the treatment of adults with advanced gastrointestinal stromal tumors. This paper reports an attempt to study this molecule by electronic modeling and molecular mechanics to determine its composition and other specific chemical features via the density-functional theory (DFT), thereby affording sufficient information on the electronic properties and descriptors that can enable the estimation of its molecular bioactivity. We explored most of the physico-chemical properties of the molecule, as well as its stabilization, via the studies of the natural bond orbitals and noncovalent interactions. The electronic excitation, which is a time-dependent process, was examined by the time-dependent DFT with a CAM-B3LYP functional. The molecular docking study indicated that Ripretinib strongly docks with three known novel severe acute respiratory syndrome coronavirus 2 (SARS-n-CoV-2) proteins with a reasonably good docking score.

9.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233673

RESUMO

A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.


Assuntos
Complexos de Coordenação , Cádmio/química , Catálise , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Modelos Moleculares , Oxirredução
10.
Molecules ; 25(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348597

RESUMO

Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along with hazardous gases considerably limiting its uses in various fields. In this study, N-ethanolamine triazine-piperizine, a melamine polymer (ETPMP), was established as a new charring-foaming agent and was successfully synthesized with ethanolamine, piperizine, cyanuric chloride, and melamine as precursor molecules via the nucleophilic substitution reaction method. Elemental analysis and Fourier transform infrared (FTIR) spectroscopy analysis were applied to approve the synthesis of ETPMP and confirmation of its structure and characterization. The epoxy coating of intumescent flame retardant (IFR) was equipped by introducing ETPMP, ammonium polyphosphate (APP), and copper oxide (CuO) in multiple composition ratios. CuO was loaded at various amounts into the IFR-coating system as a synergistic agent. The synergistic action of CuO on IFR coatings was scientifically examined by using different analytical tests such as vertical burning test (UL-94V), limited oxygen index (LOI), thermal gravimetric analysis (TGA), cone calorimeter, and scanning electron microscope (SEM). The results showed that small changes in the amount of CuO expressively amplified the LOI results and enhanced the V-0 ratings in the UL-94V test. The TGA data clearly demonstrate that the inclusion of CuO can transform the thermal deprivation behavior of coatings with a growing char slag proportion with elevated temperatures. Information from cone calorimeter data affirmed that CuO can decrease the burning factors by total heat release (THR) together with peak heat release rate (PHRR). The SEM images indicated that CuO can enrich the power and compression of the intumescent char that restricts the movement of heat and oxygen. Our results demonstrate a positive influence of CuO on the epoxy-headed intumescent flame retardant coatings.


Assuntos
Cobre/química , Resinas Epóxi/química , Retardadores de Chama/síntese química , Piperazinas/síntese química , Polímeros/química , Compostos Benzidrílicos/química , Calorimetria , Análise Diferencial Térmica , Fenóis/química , Piperazinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triazinas/química
11.
Molecules ; 25(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403218

RESUMO

Three new tetradentate NNNS Schiff bases (L1-L3) derived from 2-(piperidin-4-yl)ethanamine were prepared in high yields. UV-Visible and FTIR spectroscopy were used to monitor the dehydration reaction between 2-(piperidin-4-yl)ethanamine and the corresponding aldehydes. Structures of the derived Schiff bases were deduced by 1H and 13C NMR, FTIR, UV-Vis, MS, EA, EDS, and TG-derived physical measurements. DFT/B3LYP theoretical calculations for optimization, TD-DFT, frequency, Molecular Electrostatic Potential (MEP), and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) / were performed for L2. The in vitro antimicrobial activities of the three Schiff bases were evaluated against several types of bacteria by disk diffusion test using Gentamicin as the standard antibiotic. Schiff bases revealed good antioxidant activity by the DPPH method, and the IC50 values were compared to the Trolox standard. Pancreatic porcine lipase inhibition assay of the synthesized compounds revealed promising activity as compared to the Orlistat reference.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Lipase/antagonistas & inibidores , Bases de Schiff/química , Bases de Schiff/síntese química , Concentração Inibidora 50 , Klebsiella pneumoniae/efeitos dos fármacos , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Pâncreas/enzimologia , Piperazina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Bases de Schiff/farmacologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Eletricidade Estática , Temperatura , Tiofenos/química , Difração de Raios X
12.
Molecules ; 25(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339423

RESUMO

The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2-sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV-Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric-derivative thermogravimetric analysis, indicating its stability up to 95 °C.


Assuntos
Benzaldeídos/química , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Sítios de Ligação , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Ligação de Hidrogênio , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
13.
J Mol Liq ; 318: 114082, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32863490

RESUMO

Melatonin is a natural hormone from the pineal gland that regulates the sleep-wake cycle. We examined the structure and physico-chemical properties of melatonin using electronic structure methods and molecular-mechanics tools. Density functional theory (DFT) was used to optimise the ground-state geometry of the molecule from frontier molecular orbitals, which were analysed using the B3LYP functional. As its electrons interacted with electromagnetic radiation, electronic excitations between different energy levels were analysed in detail using time-dependent DFT with CAM-B3LYP orbitals. The results provide a wealth of information about melatonin's electronic properties, which will enable the prediction of its bioactivity. Molecular docking studies predict the biological activity of the molecules against the coronavirus2 protein. Excellent docking scores of -7.28, -7.20, and -7.06 kcal/mol indicate that melatonin can help to defend against the viral load in vulnerable populations. Hence it can be investigated as a candidate drug for the management of COVID.

14.
Chin J Chem Eng ; 28(2)2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34131370

RESUMO

Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry. Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactured worldwide each year. Adsorptive separation using C2H6-selective porous materials to directly produce high-purity C2H4 is more energy-efficient. We herein report the "reversed C2H6/C2H4 adsorption" in a metal-organic framework Cr-BTC via the introduction of oxygen on its open metal sites. The oxidized Cr-BTC(O2) can bind C2H6 over C2H4 through the active Cr-superoxo sites, which was elucidated by the gas sorption isotherms and density functional theory calculations. This material thus exhibits a good performance for the separation of 50/50 C2H6/C2H4 mixtures to produce 99.99% pure C2H4 in a single separation operation.

15.
J Am Chem Soc ; 141(5): 2054-2060, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30621391

RESUMO

The incorporation of large π-conjugated ligands into metal-organic frameworks (MOFs) can introduce intriguing photophysical and electrochemical properties into the framework. However, these effects are often hindered by the strong π-π interaction and the low solubility of the arylated ligands. Herein, we report the synthesis of a porous zirconium-based MOF, Zr6(µ3-O)4(µ3-OH)4(OH)6(H2O)6(HCHC) (PCN-136, HCHC = hexakis(4-carboxyphenyl)hexabenzocoronene), which is composed of a hexacarboxylate linker with a π-conjugated hexabenzocoronene moiety. Direct assembly of the Zr4+ metal centers and the HCHC ligands was unsuccessful due to the low solubility and the unfavorable conformation of the arylated HCHC ligand. Therefore, PCN-136 was obtained from aromatization-driven postsynthetic annulation of the hexaphenylbenzene fragment in a preformed framework (pbz-MOF-1) to avoid π-π stacking. This postsynthetic modification was done through a single-crystal-to-single-crystal transformation and was clearly observable utilizing single -crystal X-ray crystallography. The formation of large π-conjugated systems on the organic linker dramatically enhanced the photoresponsive properties of PCN-136. With isolated hexabenzocoronene moieties as photosensitizers and Zr-oxo clusters as catalytic sites, PCN-136 was employed as an inherent photocatalytic system for CO2 reduction under visible-light irradiation, which showed increased activity compared with pbz-MOF-1.

16.
J Fluoresc ; 29(4): 1029-1037, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31327088

RESUMO

A novel coumarin based Schiff base sensor probe 1, was synthesized and structural elucidation was carried out by FTIR, UV-vis, 1H and 13C NMR and MS spectroscopy. The optical properties of the sensor probe were investigated by employing absorption and fluorescence titrations which showed specific recognition behaviour being highly selective towards Cd2+ over the other 3d transition metal ions. The strong fluorometric response of probe 1 towards Cd2+ ion is attributed to inhibition of C=N isomerization effect upon coordination of the metal ion. The binding stoichiometry was determined by Job's plot and the probable sensing mechanism of the probe towards Cd2+ was investigated by employing FTIR spectra analysis and 1H NMR titration experiments. Computational validation of the sensing mechanism in various modes towards Cd2+ was also performed by carrying out the DFT studies which were found to be in good concordance with the experimental results. The reversible nature of the probe was studied by EDTA titration indicating that it can be reused. Interaction studies of the sensor probe with the BSA showed the practical applicability for the quantitative determination of Cd2+ concentration in the blood plasma. The lower detection limit of the probe upto 0.114 µM further proves its practical application in the sensing phenomenon.

17.
Angew Chem Int Ed Engl ; 57(15): 3927-3932, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29451952

RESUMO

Epitaxial growth of MOF-on-MOF composite is an evolving research topic in the quest for multifunctional materials. In previously reported methods, the core-shell MOFs were synthesized via a stepwise strategy that involved growing the shell-MOFs on top of the preformed core-MOFs with matched lattice parameters. However, the inconvenient stepwise synthesis and the strict lattice-matching requirement have limited the preparation of core-shell MOFs. Herein, we demonstrate that hybrid core-shell MOFs with mismatching lattices can be synthesized under the guidance of nucleation kinetic analysis. A series of MOF composites with mesoporous core and microporous shell were constructed and characterized by optical microscopy, powder X-ray diffraction, gas sorption measurement, and scanning electron microscopy. Isoreticular expansion of microporous shells and orthogonal modification of the core was realized to produce multifunctional MOF composites, which acted as size selective catalysts for olefin epoxidation with high activity and selectivity.

18.
Langmuir ; 32(9): 2208-15, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26886079

RESUMO

This work investigates the structure-activity properties of CuOx-decorated CeO2 nanocubes with a meticulous scrutiny on the role of the CuOx/CeO2 nanointerface in the catalytic oxidation of diesel soot, a critical environmental problem all over the world. For this, a systematic characterization of the materials has been undertaken using transmission electron microscopy (TEM), transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS), X-ray diffraction (XRD), Raman, N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The TEM images show the formation of nanosized CeO2 cubes (∼25 nm) and CuOx nanoparticles (∼8.5 nm). The TEM-EDS elemental mapping images reveal the uniform decoration of CuOx nanoparticles on CeO2 nanocubes. The XPS and Raman studies show that the decoration of CuOx on CeO2 nanocubes leads to improved structural defects, such as higher concentrations of Ce(3+) ions and abundant oxygen vacancies. It was found that CuOx-decorated CeO2 nanocubes efficiently catalyze soot oxidation at a much lower temperature (T50 = 646 K, temperature at which 50% soot conversion is achieved) compared to that of pristine CeO2 nanocubes (T50 = 725 K) under tight contact conditions. Similarly, a huge 91 K difference in the T50 values of CuOx/CeO2 (T50 = 744 K) and pristine CeO2 (T50 = 835 K) was found in the loose-contact soot oxidation studies. The superior catalytic performance of CuOx-decorated CeO2 nanocubes is mainly attributed to the improved redox efficiency of CeO2 at the nanointerface sites of CuOx-CeO2, as evidenced by Ce M5,4 EELS analysis, supported by XRD, Raman, and XPS studies, a clear proof for the role of nanointerfaces in the performance of heterostructured nanocatalysts.

19.
RSC Adv ; 14(3): 1593-1601, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179094

RESUMO

In this study, we successfully synthesized polymeric graphitic carbon nitride (g-C3N4) nanosheets through thermal means and proposed their application in solid-phase extraction (SPE) for the enrichment of trace Hg(ii). The nanosheets underwent characterization using scanning electron microscopy, tunnelling electron microscopy, and energy-dispersive X-ray spectroscopy. The column packed with polymeric carbon nitride nanosheets demonstrated effective extraction of trace Hg(ii) ions from complex samples. The g-C3N4 nanosheets possess a zeta potential value of -20 mV, enabling strong interaction with positively charged divalent Hg(ii) ions. This interaction leads to the formation of stable chelates with the nitrogen atoms present in the polytriazine and heptazine units of the material. The proposed method exhibited a high preconcentration limit of 0.33 µg L-1, making it suitable for analysing trace amounts of Hg(ii) ions. Moreover, the method's applicability was confirmed through successful analysis of real samples, achieving an impressive preconcentration factor of 200. The detection limit for trace Hg(ii) ions was determined to be 0.6 µg L-1. To assess the accuracy of the method, we evaluated its performance by recovering spiked amounts of Hg(ii) and by analysing certified reference materials. The results indicated excellent precision, with RSD consistently below 5% for all the analyses conducted. In conclusion, the thermally synthesized polymeric carbon nitride nanosheets present a promising approach for solid-phase extraction and preconcentration of trace Hg(ii) from real samples. The method showcases high efficiency, sensitivity, and accuracy, making it a valuable tool for environmental and analytical applications.

20.
Front Chem ; 12: 1330810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370094

RESUMO

This study introduces environmentally-friendly nanocellulose-based membranes for AZO dye (methylene blue, MB) removal from wastewater. These membranes, made of cellulose nanocrystals (CNCs), carboxymethyl cellulose (CMC), zeolite, and citric acid, aim to offer eco-friendly water treatment solutions. CNCs, obtained from sugarcane bagasse, act as the foundational material for the membranes. The study aims to investigate both the composition of the membranes (CMC/CNC/zeolite/citric acid) and the critical adsorption factors (initial MB concentration, contact time, temperature, and pH) that impact the removal of the dye. After systematic experimentation, the optimal membrane composition is identified as 60% CNC, 15% CMC, 20% zeolites, and 5% citric acid. This composition achieved a 79.9% dye removal efficiency and a 38.3 mg/g adsorption capacity at pH 7. The optimized membrane exhibited enhanced MB dye removal under specific conditions, including a 50 mg adsorbent mass, 50 ppm dye concentration, 50 mL solution volume, 120-min contact time, and a temperature of 25°C. Increasing pH from neutral to alkaline enhances MB dye removal efficiency from 79.9% to 94.5%, with the adsorption capacity rising from 38.3 mg/g to 76.5 mg/g. The study extended to study the MB adsorption mechanisms, revealing the chemisorption of MB dye with pseudo-second-order kinetics. Chemical thermodynamic experiments determine the Freundlich isotherm as the apt model for MB dye adsorption on the membrane surface. In conclusion, this study successfully develops nanocellulose-based membranes for efficient AZO dye removal, contributing to sustainable water treatment technologies and environmental preservation efforts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa