Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 234: 116587, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423355

RESUMO

The outstanding properties of nanofiber composites have made them a popular choice for various structural applications. Recently, there has been a growing interest in using electrospun nanofibers as reinforcement agents, which possess exceptional properties that can enhance the performance of these composites. Herein, TiO2-graphene oxide (GO) nanocomposite incorporated into polyacrylonitrile (PAN)/cellulose acetate (CA) nanofibers were fabricated by an effortless electrospinning technique. The chemical and structural characteristics of the resulting electrospun TiO2-GO nanofibers were examined employing diverse techniques such as XRD, FTIR, XPS, TGA, mechanical properties, and FESEM. Remediation of organic contaminants and organic transformation reactions with electrospun TiO2-GO nanofibers were performed. The results indicated that the incorporation of TiO2-GO with various TiO2/GO ratios did not affect the molecular structure of PAN-CA. Still, they did significantly increase the mean fiber diameter (234-467 nm) and the mechanical properties of the nanofibers comprising UTS, elongation, Young's modulus, and toughness compared to PAN-CA. From various ratios of TiO2/GO (0.01TiO2/0.005GO and 0.005TiO2/0.01GO) in the electrospun NFs, the nanofiber containing a high content of TiO2 showed over 97% of the initial MB dyes were degraded after 120 min of visible light exposure and the same nanofibers also, achieved 96% nitrophenol conversion to aminophenol in just 10 min with activity factor kAF value of 47.7 g-1min-1. These findings illustrate the promise of TiO2-GO/PAN-CA nanofibers for use in various structural applications, particularly in the remediation of organic contaminants from water and organic transformation reactions.


Assuntos
Nanofibras , Nitrofenóis
2.
Heliyon ; 10(17): e36731, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296183

RESUMO

Dyes are among the toxic contaminants that significantly impact water ecosystems. A biomaterial prepared from Zizyphus Spina-Christi seed (ZSCS) to remove methylene blue (MB) and methyl violet (MV) from an aqueous solution was investigated. Several techniques have been used, including FTIR, SEM, EDX, XPS, and TGA, to characterize the physical and chemical properties of ZSCS. The effect of various parameters such as pH, adsorbent dosage, contact time, temperature, and initial dye concentration on the adsorption process were studied. The ZSCS adsorbent showed efficient MB and MV dye adsorption with Langmuir adsorption capacity of 666.66 and 476.19 mg/g, respectively, at experimental condition [(pH = 6; time = 30 min; T = 45 °C, dye concentration: 500 mg/L, and adsorbent dose = 0.6 g/L for MB and 1 g/L for MV dye)]. Kinetic and isotherm models were applied to fit the experimental outcomes. The result showed that ZSCS showed an ultrafast absorption process with a high removal efficiency of MB and MV within 5 min indicating its effective adsorption properties. The Langmuir isotherm model was the most suitable model for describing the adsorption of MB and MV dyes on ZSCS. The pseudo-second-order model kinetic fits better to MB and MV adsorption onto ZSCS than other models, suggesting that the adsorption mechanism followed chemisorption. Our results could offer an efficient cost-effective approach for dye removal from wastewater.

3.
Polymers (Basel) ; 16(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611278

RESUMO

Polymer nanocomposites have recently been introduced as lead-free shielding materials for use in medical and industrial applications. In this work, novel shielding materials were developed using low-density polyethylene (LDPE) mixed with four different filler materials. These four materials are cement, cement with iron oxide, cement with aluminum oxide, and cement with bismuth oxide. Different weight percentages were used including 5%, 15%, and 50% of the cement filler with LDPE. Furthermore, different weight percentages of different combinations of the filler materials were used including 2.5%, 7.5%, and 25% (i.e., cement and iron oxide, cement and aluminum oxide, cement and bismuth oxide) with LDPE. Bismuth oxide was a nanocomposite, and the remaining oxides were micro-composites. Characterization included structural properties, physical features, mechanical and thermal properties, and radiation shielding efficiency for the prepared composites. The results show that a clear improvement in the shielding efficiency was observed when the filler materials were added to the LDPE. The best result out of all these composites was obtained for the composites of bismuth oxide (25 wt.%) cement (25 wt.%) and LDPE (50 wt.%) which have the lowest measured mean free path (MFP) compared with pure LDPE. The comparison shows that the average MFP obtained from the experiments for all the eight energies used in this work was six times lower than the one for pure LDPE, reaching up to twelve times lower for 60 keV energy. The best result among all developed composites was observed for the ones with bismuth oxide at the highest weight percent 25%, which can block up to 78% of an X-ray.

4.
ACS Appl Bio Mater ; 7(9): 5965-5976, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39194162

RESUMO

In this study, we enhanced the corrosion and microbial resistance of aluminum 7075 alloys by applying a thin layer of alumina through plasma electrolytic oxidation (PEO) in an alkali-silicate electrolyte. In addition, the influence of film sealing on coated aluminum alloy 7075 was studied in detail, specifically in oil and water at 100 °C after treatment. The surface and cross-sectional morphology, element composition, and phase composition of the PEO coatings were characterized by using scanning electron microscopy (SEM) assisted with energy-dispersive X-ray spectrometry (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coating on AA7075 PEO was evaluated before and after post-treatment using hot water and hump oil at 100 °C. This assessment was conducted by using various electrochemical techniques, including open-circuit potential (OCP), linear polarization resistance (LPR), potentiodynamic polarization scan (PD), electrochemical impedance spectroscopy (EIS), and cyclic potentiodynamic scan (CPS). The results showed that the corrosion resistance of the AA7075 alloy was significantly improved after the PEO coating. The AA7075 + SF, among all of the examined alloys, exhibited superior corrosion properties, due to its fat sealing. This is probably due to the formation of a mixed fatty acid layer from oil on the surface of the AA7075 PEO, which synthesizes a hydrophobic layer. Interestingly, the samples treated with PEO showed a great resistance to microbial growth.


Assuntos
Ligas , Teste de Materiais , Oxirredução , Propriedades de Superfície , Ligas/química , Tamanho da Partícula , Corrosão , Eletrólise
5.
Polymers (Basel) ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732681

RESUMO

Experiments have assessed various polymer composites for radiation shielding in diverse applications. These composites are lighter and non-toxic when compared to lead (Pb), making them particularly effective in diagnostic imaging for shielding against low-energy photons. This study demonstrates the fabrication of four composites by combining a base material, specifically a high-density polyethylene (HDPE) polymer, with 10% and 20% silicon (Si) and silicon carbide (SiC), respectively. Additionally, 5% molybdenum (Mo) was incorporated into the composites as a heavy metal element. The composites obtained were fabricated into 20 disks with a uniform thickness of 2 mm each. Discs were exposed to radiation from a low-energy X-ray source (32.5-64.5 keV). The chemical and physical properties of composites were assessed. The shielding ability of samples was evaluated by determining the linear and mass attenuation coefficients (µ and µm), radiation protection efficiency (RPE), half-value layer (HVL), and mean free path (MFP). According to our findings, supplementing HDPE with additives improved the attenuation of beams. The µm values showed that composite X-ray shielding characteristics were enhanced with filler concentration for both Si and SiC. Polymer composites with micro-molecule fillers shelter X-rays better than polymers, especially at low energy. The HVL and MFB values of the filler are lower than those of the pure HDPE sample, indicating that less thickness is needed to shield at the appropriate energy. HC-20 blocked 92% of the incident beam at 32.5 keV. This study found that increasing the composite sample thickness or polymer filler percentage could shield against low-energy radiation.

6.
Int J Biol Macromol ; 225: 1517-1528, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427619

RESUMO

In this study, the chitosan-grafted tetracarboxylic functionalized magnetic nanoparticle (Fe3O4@TCA@CS) was synthesized via in situ co-precipitation process and amidation reaction to improve efficiency of adsorption process and obtain cost-effective adsorbents for removal of toxic Pb(II) metal from aqueous environment. The Fe3O4@TCA@CS nanocomposite was analyzed by FTIR, TEM-EDX, TGA, XRD, BET, and Zeta potential. The performance of Fe3O4@TCA@CS for Pb(II) ions adsorption was achieved as a function of pH, dose, contact time, initial Pb(II) concentration, and temperature. The influence of coexisting ions such as Na+, Ca2+, Mg2+, and Cd2+on removal efficiency of Pb(II) was also investigated. The results revealed that the coexisting ions had little influence on Pb(II) removal efficiency. The pseudo-first-order and Freundlich models were better to describe the adsorption of Pb(II) onto Fe3O4@TCA@CS and the maximum adsorption capacity of Pb(II) was 204.92 mg/g at pH:5.5; adsorbent dose: 0.015 g; and temperature: 298 K. Thermodynamic studies revealed that the Pb(II) adsorption onto Fe3O4@TCA@CS was an exothermic process. In conclusion, the study provides a new, simple, low-cost, and effective chitosan-based magnetic nanocomposite as a promising adsorbent with excellent adsorption capacity, magnetic separation, and reusability for Pb(II) removal from an aqueous environment.


Assuntos
Quitosana , Nanopartículas de Magnetita , Poluentes Químicos da Água , Purificação da Água , Chumbo , Água , Termodinâmica , Adsorção , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
7.
Materials (Basel) ; 15(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35591398

RESUMO

Thermal energy storage technology is an important topic, as it enables renewable energy technology to be available 24/7 and under different weather conditions. Phase changing materials (PCM) are key players in thermal energy storage, being the most economic among those available with adjustable thermal properties. Paraffin wax (PW) is one of the best materials used in industrial processes to enhance thermal storage. However, the low thermal conductivity of PW prevents its thermal application. In this study, we successfully modified PW based on multi-walled carbon nanotubes (MWCNT) with different concentrations of TiO2-3, 5 and 7 wt.%. The morphology of PCM and its relationship with the chemical structure and stability were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and Thermogravimetric analysis (TGA). As a result, the composites achieved a highest latent heat enthalpy of 176 J/g, in addition to enhanced thermal stability after 15 thermal cycles, and reliability, with a slight change in latent heat observed when using a differential scanning calorimeter (DSC). The thermal conductivity of the composites could significantly be enhanced by 100%. Compared to pure paraffin, the PCM composites developed in this study exhibited an excellent preference for thermal energy storage and possessed low cost, high reliability, and phase change properties.

8.
Polymers (Basel) ; 13(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206963

RESUMO

The purpose of this study was to assess the ability of titanium Ti(IV) alkyloxy compounds supported by organic polymer polyvinyl chloride (PVC) to polymerize ethylene by feeding triethylaluminium (TEA) as a cocatalyst. Additionally, the impacts of the molar ratio of [Al]/[Ti] on the catalytic activities in ethylene's polymerization and of the comonomer through utilization of diverse quantities of comonomers on a similar or identical activity were studied. The optimal molar ratio of [Al]/[Ti] was 773:1, and the prepared catalyst had an initial activity of up to 2.3 kg PE/mol Ti. h. when the copolymer was incorporated with 64 mmol of 1-octene. The average molecular weight (Mw) of the copolymer produced with the catalysts was between 97 kg/mol and 326 kg/mol. A significant decrease in the Mw was observed, and PDI broadened with increasing concentration of 1-hexene because of the comonomer's stronger chain transfer capacity. The quick deactivation of titanium butoxide Ti(OBu)4 on the polymers was found to be associated with increasing oxidation when supported by the catalyst. The presence of Ti(III) after reduction with the aluminum alkyls cleaves the carbon-chlorine bonds of the polymer, producing an inactive polymeric Ti(IV) complex. The results show that synergistic effects play an important role in enhancing the observed rate of reaction, as illustrated by evidence from scanning electron microscopy (SEM). The diffusion of cocatalysts within catalytic precursor particles may also explain the progression of cobweb structures in the polymer particles.

9.
Materials (Basel) ; 14(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466885

RESUMO

Our goal is to develop a structural ceramic for high-temperature applications in which silicon carbide-based materials (SiCs) are used as matrix composites. The potential of SiCs to deposit a mixture of SiC and zirconium diboride (ZrB2) plasma spray coating is analyzed. To deposit thermal barrier layers containing up to 50 vol.% SiC, a high-pressure plasma spray (HPPS) process was used. Although the SiC cannot be deposited by thermal spray, a mixture of SiC and zirconium diboride (ZrB2) was deposited because these two compounds form a eutectic phase at a temperature below SiC decomposition. The preference was two different forms, 3 mm and 1 mm, of graphite substrates with different thickness values. A comparison of the morphology of SiC-ZrB2 coatings before and after thermal treatment was performed by applying heat to the surface of a gas torch and traditional furnace between 800 °C and 1200 °C. The growth of the oxide scale was calculated with X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and density. The oxide scale consists of a SiO2 layer with ZrO2 groups. The findings indicate a greater potential for the studied material in protecting against high-temperature oxidation and in a wide variety of aerospace applications.

10.
Polymers (Basel) ; 13(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577982

RESUMO

Recently developed polymer-based composites could prove useful in many applications such as in radiation shielding. In this work, the potential of a bismuth oxide (Bi2O3) nanofiller based on an LDPE polymer was developed as lead-free X-ray radiation shielding offering the benefits of lightness, low-cost and non-toxic compared to pure lead. Three different LDPE-based composites were prepared with varying weight percentages of Bi2O3: 5%, 10% and 15%. The characterizations were extended to include structural properties, physical features, mechanical and thermal properties, and radiation shielding efficiency for the prepared nanocomposites. The results revealed that the incorporation of the Bi2O3 nanofiller into an LDPE improved the density of the composites. There was also a slight increase in the tensile strength and tensile modulus. In addition, there was a clear improvement in the efficiency of the shield when fillers were added to the LDPE polymer. The LDPE + Bi2O3 (15%) composite needed the lowest thickness to attenuate 50% of the incident X-rays. The LDPE + Bi2O3 (15%) polymer can also block around 80% of X-rays at 47.9 keV. In real practice, a thicker shield of the proposed composite materials, or a higher percentage of the filler could be employed to safely ensure the radiation is blocked.

11.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372077

RESUMO

Carbon fiber-reinforced polymers are considered a promising composite for many industrial applications including in the automation, renewable energy, and aerospace industries. They exhibit exceptional properties such as a high strength-to-weight ratio and high wear resistance and stiffness, which give them an advantage over other conventional materials such as metals. Various polymers can be used as matrices such as thermosetting, thermoplastic, and elastomers polymers. This comprehensive review focuses on carbon fiber-reinforced thermoplastic polymers due to the advantages of thermoplastic compared to thermosetting and elastomer polymers. These advantages include recyclability, ease of processability, flexibility, and shorter production time. The related properties such as strength, modulus, thermal conductivity, and stability, as well as electrical conductivity, are discussed in depth. Additionally, the modification techniques of the surface of carbon fiber, including the chemical and physical methods, are thoroughly explored. Overall, this review represents and summarizes the future prospective and research developments carried out on carbon fiber-reinforced thermoplastic polymers.

12.
J Hazard Mater ; 389: 121896, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879118

RESUMO

Herein, a novel nanocomposite (Fe3O4@TATS@ATA) was prepared and used for adsorptive removal of Pb(II) ions from aqueous environment. The magnetic nanocomposite (Fe3O4@TATS@ATA) was characterized using FTIR, TEM, SEM, EDX, element mapping analysis (EMA), TGA analysis, XRD patterns, VSM, BET analysis, XPS spectrum, and zeta potential. The FTIR study confirmed the modification of Fe3O4 nanoparticles with triaminetriethoxysilane and 2-aminoterephthalic acid while XPS analysis (with peaks at 283.6, 285.1, 286.3, 284.5.0, 288.4 eV) displayed the presence of CSi, CN, OCNH, CC/CC and OCO functional groups, respectively on Fe3O4@TATS@ATA. The BET surface area, average pore size, pore volume and magnetization saturation for Fe3O4@TATS@ATA were found to be 114 m2/g, 6.4 nm, 0.054 cm-3/g, and 22 emu/g, respectively. The adsorption isotherm data showed that Pb(II) adsorption onto Fe3O4@TATS@ATA fitted to Langmuir and Dubinin-Raduskevich isotherm model due to better R2 value which was greater than 0.9 and qm of Pb(II) was 205.2 mg/g at pH 5.7 in 150 min. Adsorption kinetics data displayed that Pb(II) adsorption onto Fe3O4@TATS@ATA was fitted to the pseudo-second-order and Elovich kinetic models. Thermodynamic outcomes exhibited the exothermic and spontaneous nature of adsorption. Results showed that Fe3O4@TATS@ATA nanocomposite was promising material for efficient removal of toxic Pb(II) from aqueous environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa