Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 145(9): 3108-3130, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35512359

RESUMO

Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial amyotrophic lateral sclerosis cases, and sporadic amyotrophic lateral sclerosis cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in amyotrophic lateral sclerosis cases, and clearly differentiated all forms of amyotrophic lateral sclerosis from controls. Substantial heterogeneity in the presence of these changes was also observed between amyotrophic lateral sclerosis cases. Our data demonstrate that varying forms of SOD1 proteinopathy are a common feature of all forms of amyotrophic lateral sclerosis, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in amyotrophic lateral sclerosis. Most of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.


Assuntos
Esclerose Lateral Amiotrófica , Processamento de Proteína Pós-Traducional , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Humanos , Mutação , Medula Espinal/patologia , Superóxido Dismutase-1/genética
2.
Anal Chem ; 84(14): 5976-83, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22816781

RESUMO

The collision-induced dissociation (CID) of a range of deprotonated fatty acid standards was studied using linear ion trap mass spectrometry. Neutral losses of 78, 98, and 136 Da were consistently observed for fatty acids with five or more double bonds. Comparison of the MS/MS spectra of docosahexaenoic acid (DHA) and universally (13)C-labeled DHA allowed the molecular formulas for these neutral losses to be determined as C(6)H(6), C(5)H(6)O(2), and C(8)H(8)O(2). Knowledge of fatty acid fragmentation processes was then applied to identify fatty acids from a sea anemone, Aiptasia pulchella, and dinoflagellate symbiont, Symbiodinium sp. extract. Using HPLC-MS, fatty acids were separated and analyzed by tandem mass spectrometry in data-dependent acquisition mode. Neutral loss chromatograms for 78, 98, and 136 Da allowed the identification of long-chain fatty acids with five or more double bonds. On the basis of precursor ion m/z ratios, chain length and degree of unsaturation for these fatty acids were determined. The application of this technique to an Aiptasia sp.-Symbiodinium sp. lipid extract enabled the identification of the unusual, long-chain fatty acids 24:6, 26:6, 26:7, 28:7, and 28:8 during a single 40 min HPLC-MS analysis.


Assuntos
Alveolados/química , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/química , Espectrometria de Massas/métodos , Anêmonas-do-Mar/química , Animais , Fatores de Tempo
3.
J Am Soc Mass Spectrom ; 25(11): 1917-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142324

RESUMO

The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.


Assuntos
Ácidos Graxos/química , Íons/química , Espectrometria de Massas/métodos , Modelos Moleculares
4.
J Am Soc Mass Spectrom ; 25(2): 237-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24338213

RESUMO

Fatty acids are long-chain carboxylic acids that readily produce [M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H + Fe(II)Cl](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the [M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F(-) and (-)OH), is the lowest energy dissociation pathway.


Assuntos
Ânions/química , Ácidos Graxos Insaturados/química , Sódio/química , Espectrometria de Massas por Ionização por Electrospray
5.
Mar Biol ; 159(3): 689-695, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24391271

RESUMO

The blue-lined octopus Hapalochlaena fasciata contains the powerful neuromuscular blocker tetrodotoxin (TTX), which causes muscle weakness and respiratory failure. H. fasciata is regarded as one of the most venomous marine animals in the world, and multiple human fatalities have been attributed to the octopus. To date, there have been no recorded incidents of an envenomation of a wild animal. Here, we present a newly developed, multi-stage tandem mass spectrometry technique that provides unequivocal evidence for two cases of envenomation of two ~110 kg herbivorous green sea turtles by two tiny cryptic blue-lined octopuses (~4 cm body length). These cases of accidental ingestion provide evidence for the first time of the antipredator effect of TTX and highlight a previously unconsidered threat to turtles grazing within seagrass beds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa