Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448083

RESUMO

This paper presents for the first time a compact wideband bandpass filter in groove gap waveguide (GGW) technology. The structure is obtained by including metallic pins along the central part of the GGW bottom plate according to an n-order Chebyshev stepped impedance synthesis method. The bandpass response is achieved by combining the high-pass characteristic of the GGW and the low-pass behavior of the metallic pins, which act as impedance inverters. This simple structure together with the rigorous design technique allows for a reduction in the manufacturing complexity for the realization of high-performance filters. These capabilities are verified by designing a fifth-order GGW Chebyshev bandpass filter with a bandwidth BW = 3.7 GHz and return loss RL = 20 dB in the frequency range of the WR-75 standard, and by implementing it using computer numerical control (CNC) machining and three-dimensional (3D) printing techniques. Three prototypes have been manufactured: one using a computer numerical control (CNC) milling machine and two others by means of a stereolithography-based 3D printer and a photopolymer resin. One of the two resin-based prototypes has been metallized from a silver vacuum thermal evaporation deposition technique, while for the other a spray coating system has been used. The three prototypes have shown a good agreement between the measured and simulated S-parameters, with insertion losses better than IL = 1.2 dB. Reduced size and high-performance frequency responses with respect to other GGW bandpass filters were obtained. These wideband GGW filter prototypes could have a great potential for future emerging satellite communications systems.


Assuntos
Impressão Tridimensional , Comunicações Via Satélite , Simulação por Computador , Desenho de Equipamento , Impedância Elétrica
2.
Sensors (Basel) ; 19(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717601

RESUMO

Low-cost and flexible radio frequency identification (RFID) tag for automatic identification, tracking, and monitoring of blood products is in great demand by the healthcare industry. A robust performance to meet security and traceability requirements in the different blood sample collection and analysis centers is also required. In this paper, a novel low-cost and flexible passive RFID tag is presented for blood sample collection tubes. The tag antenna is based on two compact symmetrical capacitive structures and works at the ultra-high frequency (UHF) European band (865 MHz-868 MHz). The tag antenna is designed considering the whole dielectric parameters such as the blood, substrate and tube. In this way, it operates efficiently in the presence of blood, which has high dielectric permittivity and loss. Measurement results of the proposed tag have confirmed simulation results. The measured performance of the tag shows good matching in the desired frequency band, leading to reading ranges up to 2.2 m, which is 4.4 times higher than typical commercial tags. The potential of this tag as a sensor to monitor the amount of blood contained in clinic tubes is also demonstrated. It is expected that the proposed tag can be useful and effective in future RFID systems to introduce security and traceability in different blood sample collection and analysis centers.


Assuntos
Dispositivo de Identificação por Radiofrequência/métodos , Humanos , Monitorização Fisiológica
3.
Materials (Basel) ; 11(1)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29283391

RESUMO

An open ring resonator (ORR) loaded with a varactor diode is designed and implemented in order to achieve high-performance tunable band-stop filters in planar technology with a compact size. This varactor-loaded ORR (VLORR) is versatile. It allows a shunt connection with different planar waveguide sections. In this paper, it has been connected to a coplanar waveguide (CPW) and a half-mode substrate integrated waveguide (HMSIW). As a reverse bias voltage is applied to the VLORR, a continuous tuning over the resulting stop-band can be achieved. To illustrate the possibilities of the VLORR, three prototypes have been designed, fabricated, and characterized. The three prototypes show an outstanding performance, with a rejection level at the resonant frequency and a tuning range greater than 12 dB and 85%, respectively. This VLORR has high potential value in microwave communication systems to eliminate unwanted signals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa