Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Toxicol Appl Pharmacol ; 487: 116961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740095

RESUMO

LEAD-452 is a humanized bispecific EGFR-targeted 4-1BB-agonistic trimerbody with a unique trimeric configuration compared to other 4-1BB-specific antibodies that are currently in development. Indeed, enhanced tumor-specific costimulation and very remarkable safety and efficacy profiles have been observed in mouse models. Here, we conducted for the first time a preclinical pharmacokinetic and toxicity study in non-human primates (NHP) (Macaca fascicularis). LEAD-452 exhibits comparable binding affinity for human and macaque targets, indicating its pharmacological significance for safety testing across species. The NHP were administered LEAD-452 in a series of ascending doses, ranging from 0.1 mg/kg to 10 mg/kg, and repeated doses up to 20 mg/kg. The administration of LEAD-452 was found to be clinically well tolerated, with no major related adverse effects observed. Furthermore, there have been no reported cases of liver toxicity, thrombocytopenia, and neutropenia, which are commonly associated with treatments using conventional anti-4-1BB IgG-based antibodies. In addition, neither IgM nor IgG-based anti-drug antibodies were detected in serum samples from NHP during the study, regardless of the dose of LEAD-452 administered. These results support the clinical development of LEAD-452 for the treatment of solid tumors.


Assuntos
Receptores ErbB , Macaca fascicularis , Animais , Receptores ErbB/imunologia , Humanos , Masculino , Feminino , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/efeitos adversos , Relação Dose-Resposta a Droga
2.
Oncoimmunology ; 13(1): 2338558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623463

RESUMO

T cell-based immunotherapies for solid tumors have not achieved the clinical success observed in hematological malignancies, partially due to the immunosuppressive effect promoted by the tumor microenvironment, where PD-L1 and TGF-ß play a pivotal role. However, durable responses to immune checkpoint inhibitors remain limited to a minority of patients, while TGF-ß inhibitors have not reached the market yet. Here, we describe a bispecific antibody for dual blockade of PD-L1 and TFG-ß, termed AxF (scFv)2, under the premise that combination with T cell redirecting strategies would improve clinical benefit. The AxF (scFv)2 antibody was well expressed in mammalian and yeast cells, bound both targets and inhibited dose-dependently the corresponding signaling pathways in luminescence-based cellular reporter systems. Moreover, combined treatment with trispecific T-cell engagers (TriTE) or CAR-T cells significantly boosted T cell activation status and cytotoxic response in breast, lung and colorectal (CRC) cancer models. Importantly, the combination of an EpCAMxCD3×EGFR TriTE with the AxF (scFv)2 delayed CRC tumor growth in vivo and significantly enhanced survival compared to monotherapy with the trispecific antibody. In summary, we demonstrated the feasibility of concomitant blockade of PD-L1 and TGF-ß by a single molecule, as well as its therapeutic potential in combination with different T cell redirecting agents to overcome tumor microenvironment-mediated immunosuppression.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias Colorretais , Animais , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/farmacologia , Antígeno B7-H1 , Neoplasias Colorretais/tratamento farmacológico , Linfócitos T , Fator de Crescimento Transformador beta , Microambiente Tumoral
3.
Antibodies (Basel) ; 13(2)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38804302

RESUMO

Immune checkpoint blockade has changed the treatment paradigm for advanced solid tumors, but the overall response rates are still limited. The combination of checkpoint blockade with anti-4-1BB antibodies to stimulate tumor-infiltrating T cells has shown anti-tumor activity in human trials. However, the further clinical development of these antibodies has been hampered by significant off-tumor toxicities. Here, we generated an anti-4-1BB/EGFR/PD-L1 trispecific antibody consisting of a triple-targeting tandem trimerbody (TT) fused to an engineered silent Fc region. This antibody (IgTT-4E1-S) was designed to combine the blockade of the PD-L1/PD-1 axis with conditional 4-1BB costimulation specifically confined to the tumor microenvironment (TME). The antibody demonstrated simultaneous binding to purified EGFR, PD-L1, and 4-1BB in solution, effective blockade of the PD-L1/PD1 interaction, and potent 4-1BB-mediated costimulation, but only in the presence of EGFR-expressing cells. These results demonstrate the feasibility of IgTT-4E1-S specifically blocking the PD-L1/PD-1 axis and inducing EGFR-conditional 4-1BB agonist activity.

4.
Sci Transl Med ; 16(734): eadg7962, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354229

RESUMO

Multiple myeloma is the second most common hematological malignancy in adults and remains an incurable disease. B cell maturation antigen (BCMA)-directed immunotherapy, including T cells bearing chimeric antigen receptors (CARs) and systemically injected bispecific T cell engagers (TCEs), has shown remarkable clinical activity, and several products have received market approval. However, despite promising results, most patients eventually become refractory and relapse, highlighting the need for alternative strategies. Engineered T cells secreting TCE antibodies (STAb) represent a promising strategy that combines the advantages of adoptive cell therapies and bispecific antibodies. Here, we undertook a comprehensive preclinical study comparing the therapeutic potential of T cells either expressing second-generation anti-BCMA CARs (CAR-T) or secreting BCMAxCD3 TCEs (STAb-T) in a T cell-limiting experimental setting mimicking the conditions found in patients with relapsed/refractory multiple myeloma. STAb-T cells recruited T cell activity at extremely low effector-to-target ratios and were resistant to inhibition mediated by soluble BCMA released from the cell surface, resulting in enhanced cytotoxic responses and prevention of immune escape of multiple myeloma cells in vitro. These advantages led to robust expansion and persistence of STAb-T cells in vivo, generating long-lived memory BCMA-specific responses that could control multiple myeloma progression in xenograft models, outperforming traditional CAR-T cells. These promising preclinical results encourage clinical testing of the BCMA-STAb-T cell approach in relapsed/refractory multiple myeloma.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Adulto , Humanos , Mieloma Múltiplo/patologia , Linfócitos T , Imunoterapia Adotiva/métodos , Antígeno de Maturação de Linfócitos B , Memória Imunológica , Recidiva Local de Neoplasia/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa