Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Biol ; 127(7-8): 1136-1145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495304

RESUMO

Although Metarhizium anisopliae is one of the most studied fungal biocontrol agents, its infection mechanism is far from being completely understood. Using multidimensional protein identification technology (MudPIT), we evaluated the differential secretome of M. anisopliae E6 induced by the host Rhipicephalus microplus cuticle. The proteomic result showed changes in the expression of 194 proteins after exposure to host cuticle, such as proteins involved in adhesion, penetration, stress and fungal defense. Further, we performed a comparative genomic distribution of differentially expressed proteins of the M. anisopliae secretome against another arthropod pathogen, using the Beauveria bassiana ARSEF2860 protein repertory. Among 47 analyzed protein families, thirty were overexpressed in the M. anisopliae E6 predicted genome compared to B. bassiana. An in vivo toxicity assay using a Galleria mellonella model confirmed that the M. anisopliae E6 secretome was more toxic in cattle tick infections compared to other secretomes, including B. bassiana with cattle ticks and M. anisopliae E6 with the insect Dysdereus peruvianus, which our proteomic results had also suggested. These results help explain molecular aspects associated with host infection specificity due to genetic differences and gene expression control at the protein level in arthropod-pathogenic fungi.


Assuntos
Beauveria , Metarhizium , Rhipicephalus , Animais , Metarhizium/genética , Secretoma , Especificidade de Hospedeiro , Proteômica , Controle Biológico de Vetores/métodos , Rhipicephalus/genética , Rhipicephalus/microbiologia
2.
ACS Omega ; 6(4): 3238-3243, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553941

RESUMO

The COVID-19 pandemic caused by the new coronavirus (SARS-CoV-2) has become a global emergency issue for public health. This threat has led to an acceleration in related research and, consequently, an unprecedented volume of clinical and experimental data that include changes in gene expression resulting from infection. The SARS-CoV-2 infection database (SARSCOVIDB: https://sarscovidb.org/) was created to mitigate the difficulties related to this scenario. The SARSCOVIDB is an online platform that aims to integrate all differential gene expression data, at messenger RNA and protein levels, helping to speed up analysis and research on the molecular impact of COVID-19. The database can be searched from different experimental perspectives and presents all related information from published data, such as viral strains, hosts, methodological approaches (proteomics or transcriptomics), genes/proteins, and samples (clinical or experimental). All information was taken from 24 articles related to analyses of differential gene expression out of 5,554 COVID-19/SARS-CoV-2-related articles published so far. The database features 12,535 genes whose expression has been identified as altered due to SARS-CoV-2 infection. Thus, the SARSCOVIDB is a new resource to support the health workers and the scientific community in understanding the pathogenesis and molecular impact caused by SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa