Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 113(6): 1194-202, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26614891

RESUMO

Aromatic amines resulted from azo dyes biotransformation under anaerobic conditions are generally recalcitrant to further anaerobic degradation. The catalytic effect of carbon materials (CM) on the reduction of azo dyes is known and has been confirmed in this work by increasing threefold the biological reduction rate of Mordant Yellow 1 (MY1). The resulting m-nitroaniline (m-NoA) was further degraded to m-phenylenediamine (m-Phe) only in the presence of CM. The use of CM to degraded anaerobically aromatic amines resulted from azo dye reduction was never reported before. In the sequence, we studied the effect of different CM on the bioreduction of o-, m-, and p-NoA. Three microporous activated carbons with different surface chemistry, original (AC0 ), chemical oxidized with HNO3 (ACHNO3 ), and thermal treated (ACH2 ), and three mesoporous carbons, xerogels (CXA and CXB) and nanotubes (CNT) were assessed. In the absence of CM, NoA were only partially reduced to the corresponding Phe, whereas in the presence of CM, more than 90% was converted to the corresponding Phe. ACH2 and AC0 were the best electron shuttles, increasing the rates up to eightfold. In 24 h, the biological treatment of NoA and MY1 with AC0 , decreased up to 88% the toxicity towards a methanogenic consortium, as compared to the non-treated solutions. Biotechnol. Bioeng. 2016;113: 1194-1202. © 2015 Wiley Periodicals, Inc.


Assuntos
Compostos de Anilina/metabolismo , Compostos Azo/metabolismo , Carbono/metabolismo , Corantes/metabolismo , Geobacter/metabolismo , Poluentes Químicos da Água/metabolismo , Anaerobiose/fisiologia , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Transporte de Elétrons , Purificação da Água/métodos
2.
Anal Bioanal Chem ; 395(4): 1159-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19701801

RESUMO

The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.


Assuntos
Reatores Biológicos , Poluentes Químicos da Água/análise , Fibras Ópticas , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa