Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175911

RESUMO

Mesenchymal stromal/stem cells (MSCs) are multipotent cells with differentiation, immunoregulatory and regenerative properties. Because of these features, they represent an attractive tool for regenerative medicine and cell-based therapy. However, MSCs may act as a reservoir of persistent viruses increasing the risk of failure of MSCs-based therapies and of viral transmission, especially in immunocompromised patients. Parvovirus B19V (B19V) is a common human pathogen that infects bone marrow erythroid progenitor cells, leading to transient or persistent anemia. Characteristics of B19V include the ability to cross the placenta, infecting the fetus, and to persist in several tissues. We thus isolated MSCs from bone marrow (BM-MSCs) and fetal membrane (FM-MSCs) to investigate their permissiveness to B19V infection. The results suggest that both BM- and FM- MSCs can be infected by B19V and, while not able to support viral replication, allow persistence over time in the infected cultures. Future studies are needed to understand the potential role of MSCs in B19V transmission and the conditions that can favor a potential reactivation of the virus.


Assuntos
Eritema Infeccioso , Células-Tronco Mesenquimais , Infecções por Parvoviridae , Parvovirus B19 Humano , Gravidez , Feminino , Humanos , Parvovirus B19 Humano/genética , Replicação Viral/fisiologia , DNA Viral
2.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498923

RESUMO

Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Mesenquimais , Geleia de Wharton , Gravidez , Feminino , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Cordão Umbilical , Transplante de Células-Tronco
3.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916865

RESUMO

Degeneration of dopaminergic neurons represents the cause of many neurodegenerative diseases, with increasing incidence worldwide. The replacement of dead cells with new healthy ones may represent an appealing therapeutic approach to these pathologies, but currently, only pluripotent stem cells can generate dopaminergic neurons with high efficiency. However, with the use of these cells arises safety and/or ethical issues. Human mesenchymal stromal cells (hFM-MSCs) are perinatal stem cells that can be easily isolated from the amniochorionic membrane after delivery. Generally considered multipotent, their real differentiative potential is not completely elucidated. The aim of this study was to analyze their stemness characteristics and to evaluate whether they may overcome their mesenchymal fate, generating dopaminergic neurons. We demonstrated that hFM-MSCs expressed embryonal genes OCT4, NANOG, SOX2, KLF4, OVOL1, and ESG1, suggesting they have some features of pluripotency. Moreover, hFM-MSCs that underwent a dopaminergic differentiation protocol gradually increased the transcription of dopaminergic markers LMX1b, NURR1, PITX3, and DAT. We finally obtained a homogeneous population of cells resembling the morphology of primary midbrain dopaminergic neurons that expressed the functional dopaminergic markers TH, DAT, and Nurr1. In conclusion, our results suggested that hFM-MSCs retain the expression of pluripotency genes and are able to differentiate not only into mesodermal cells, but also into neuroectodermal dopaminergic neuron-like cells.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Células-Tronco Mesenquimais/fisiologia , Linhagem da Célula , Humanos , Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel
4.
Aesthet Surg J ; 40(6): 679-690, 2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29905790

RESUMO

BACKGROUND: New microfat preparations provide material suitable for use as a regenerative filler for different facial areas. To support the development of new robust techniques for regenerative purposes, the cellular content of the sample should be considered. OBJECTIVES: To evaluate the stromal vascular fraction (SVF) cell components of micro-superficial enhanced fluid fat injection (SEFFI) samples via a technique to harvest re-injectable tissue with minimum manipulation. The results were compared to those obtained from SEFFI samples. METHODS: Microscopy analysis was performed to visualize the tissue structure. Micro-SEFFI samples were also fractionated using Celector,® an innovative non-invasive separation technique, to provide an initial evaluation of sample fluidity and composition. SVFs obtained from SEFFI and micro-SEFFI were studied. Adipose stromal cells (ASCs) were isolated and characterized by proliferation and differentiation capacity assays. RESULTS: Microscopic and quality analyses of micro-SEFFI samples by Celector® confirmed the high fluidity and sample cellular composition in terms of red blood cell contamination, the presence of cell aggregates, and extracellular matrix fragments. ASCs were isolated from adipose tissue harvested using SEFFI and micro-SEFFI systems. These cells were demonstrated to have a good proliferation rate and differentiation potential towards mesenchymal lineages. CONCLUSIONS: Despite the small sizes and low cellularity observed in micro-SEFFI-derived tissue, we were able to isolate stem cells. This result partially explains the regenerative potential of autologous micro-SEFFI tissue grafts. In addition, using this novel Celector® technology, tissues used for aging treatment were characterized analytically, and the adipose tissue composition was evaluated with no need for extra sample processing.


Assuntos
Tecido Adiposo , Células Estromais , Envelhecimento , Diferenciação Celular , Estruturas Celulares , Humanos
5.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146388

RESUMO

Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton's Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated ß-galactosidase (SA ß-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.


Assuntos
Senescência Celular , Embrião não Mamífero/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Extratos de Tecidos/farmacologia , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra
6.
Int J Med Sci ; 15(13): 1486-1501, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443170

RESUMO

Human Mesenchymal Stem Cells (hMSCs) undergo senescence in lifespan. In most clinical trials, hMSCs experience long-term expansion ex vivo to increase cell number prior to transplantation, which unfortunately leads to cell senescence, hampering post-transplant outcomes. Hydrogen peroxide (H2O2) in vitro represents a rapid, time and cost-effective tool, commonly used as oxidative stress tantalizing the stem cell ability to cope with a hostile environment, recapitulating the onset and progression of cellular senescence. Here, H2O2 at different concentrations (ranging from 50 to 400 µM) and time exposures (1 or 2 hours - h), was used for the first time to compare the behavior of human Adipose tissue-derived Stem Cells (hASCs) and human Wharton's Jelly-derived MSCs (hWJ-MSCs), as representative of adult and perinatal tissue-derived stem cells, respectively. We showed timely different responses of hASCs and hWJ-MSCs at low and high subculture passages, concerning the cell proliferation, the cell senescence-associated ß-Galactosidase activity, the capability of these cells to undergo passages, the morphological changes and the gene expression of tumor protein p53 (TP53, alias p53) and cyclin dependent kinase inhibitor 1A (CDKN1A, alias p21) post H2O2 treatments. The comparison between the hASC and hWJ-MSC response to oxidative stress induced by H2O2 is a useful tool to assess the biological mechanisms at the basis of hMSC senescence, but it could also provide two models amenable to test in vitro putative anti-senescence modulators and develop anti-senescence strategies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Humanos , Peróxido de Hidrogênio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Geleia de Wharton/citologia , beta-Galactosidase/metabolismo
7.
New Microbiol ; 39(1): 13-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26922982

RESUMO

Anemia is the most common hematological abnormality in human immunodeficiency virus (HIV)-infected patients. Besides chronic disease, opportunistic infections, nutritional deficiencies and antiretroviral drug toxicity, the direct role of HIV in the development of anemia has not yet been fully investigated. To explore the HIV-related mechanisms involved in the genesis of anemia, we used two experimental designs. In the first, HPCs purified from cord blood were challenged with HIV-1IIIb or recombinant gp120 (rgp120) and then committed to erythrocyte differentiation (EPO-post-treated HPCs). In the second, HPCs were first committed to differentiate towards the erythroid lineage and only afterwards challenged with HIV-1IIIb or rgp120 (EPO-pre-treated HPCs). Our results showed that HPCs and EPO-induced HPCs were not susceptible to HIV-1 infection. In addition, the two experimental designs (EPO post or pre-treated HPCs) independently showed that HIV-1IIIb or rgp120 were able to induce the impairment of survival, proliferation, and differentiation albeit differing in kinetics and extent. Interestingly, the gp120 interaction with CD4 and CXCR4 played a pivotal role in the impairment of erythrocyte differentiation by inducing TGF-b1 expression. These observations reveal an important additional mechanism involved in the genesis of anemia suggesting a complex competition between EPO-positive regulation and HIV-negative priming regarding erythrocyte survival, proliferation and maturation.


Assuntos
Anemia/complicações , Células Eritroides/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/farmacologia , Infecções por HIV/etiologia , HIV-1/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Antígenos CD34/metabolismo , Antígenos CD4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritropoetina/farmacologia , Sangue Fetal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoforinas/metabolismo , HIV-1/genética , Humanos , Receptores CXCR4/metabolismo , Proteínas Recombinantes
8.
Circ J ; 79(7): 1460-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25854712

RESUMO

BACKGROUND: The main histopathological features of abdominal aortic aneurysm (AAA) are tissue proteolysis mediated by matrix metalloproteinases (MMPs) and inflammation. This study aimed at verifying the presence and contribution of mesenchymal stromal cells (MSCs) to aneurysmal tissue remodeling. METHODS AND RESULTS: MSCs were successfully isolated from the AAA wall of 12 male patients and were found to express mesenchymal and stemness markers. MMP-2/-9 are involved in AAA progression and their mRNA levels in AAA-MSCs resulted higher than healthy MSCs (cMSCs), especially MMP-9 (400-fold increased). Moreover, MMP-9 protein and activity were pronounced in AAA-MSCs. Immunomodulation was tested in AAA-MSCs after co-culture with activated peripheral blood mononuclear cells (PBMCs) and revealed a weak immunosuppressive action on PBMC proliferation (bromodeoxyuridine incorporation, flow cytometry assay), together with a reduced expression of anti-inflammatory molecules (HLA-G, IL-10) by AAA-MSCs compared to cMSCs. MMP-9 expression in AAA-MSCs was shown to be negatively modulated under the influence of cMSCs and exogenous IL-10. CONCLUSIONS: MSCs with stemness properties are niched in human AAA tissues and display a dysregulation of functional activities; that is, upregulation of MMP-9 and ineffective immunomodulatory capacity, which are crucial in the AAA progression; the possibility to modulate the increased MMP-9 expression by healthy MSCs and IL-10 suggests that novel therapeutic strategies are possible for slowing down AAA progression.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Fatores Imunológicos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/patologia , Idoso , Aorta Abdominal/imunologia , Aorta Abdominal/patologia , Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/fisiopatologia , Biomarcadores/metabolismo , Técnicas de Cocultura , Progressão da Doença , Antígenos HLA-G/metabolismo , Humanos , Interleucina-10/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Comunicação Parácrina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Int J Immunopathol Pharmacol ; 28(3): 390-402, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26216908

RESUMO

Regenerative medicine and stem cell therapy may represent the solution for the treatment of non-curable human diseases such as type 1 diabetes. In this context of growing demand for functional and safe stem cells, human amniotic epithelial cells (hAECs) from term placenta have attracted increasing interest for their wide availability, stem cell properties, and differentiation plasticity, which make them a promising tool for stem cell-based therapeutic applications. We initially assayed the stemness characteristics of hAECs in serum-free conditions. Subsequently we developed a culture procedure on extracellular matrix for the formation of three-dimensional (3D) spheroids. Finally, we tested the immunomodulation and differentiation potential of hAEC spheroids: the presence of pancreatic endocrine hormones was revealed with transmission electron microscopy and immunofluorescence analyses; the release of C-peptide in hyperglycemic conditions was assayed with ELISA. The serum-free culture conditions we applied proved to maintain the basic stemness characteristics of hAECs. We also demonstrated that 3D spheroids formed by hAECs in extracellular matrix can be induced to differentiate into insulin-producing cells. Finally, we proved that control and induced cells equally inhibit the proliferation of activated mononuclear cells. The results of this study highlight the properties of amnion derived epithelial cells as promising and abundant source for cell-based therapies. In particular we are the first group to show the in vitro pancreatic induction of hAECs cultured on extracellular matrix in a 3D fashion. We accordingly propose the outcomes of this study as a novel contribution to the development of future cell replacement therapies involving placenta-derived cells.


Assuntos
Âmnio/fisiologia , Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Insulina/metabolismo , Âmnio/metabolismo , Técnicas de Cultura de Células/métodos , Proliferação de Células/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Feminino , Humanos , Placenta/metabolismo , Placenta/fisiologia , Gravidez , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Células-Tronco/fisiologia
10.
J Pharm Biomed Anal ; 246: 116182, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772202

RESUMO

Advanced therapy medicinal products (ATMP) are complex medicines based on gene therapy, somatic cell therapy, and tissue engineering. These products are rapidly arising as novel and promising therapies for a wide range of different clinical applications. The process for the development of well-established ATMPs is challenging. Many issues must be considered from raw material, manufacturing, safety, and pricing to assure the quality of ATMPs and their implementation as innovative therapeutic tools. Among ATMPs, cell-based ATMPs are drugs altogether. As for standard drugs, technologies for quality control, and non-invasive isolation and production of cell-based ATMPs are then needed to ensure their rapidly expanding applications and ameliorate safety and standardization of cell production. In this review, emerging approaches and technologies for quality control of innovative cell-based ATMPs are described. Among new techniques, microfluid-based systems show advantages related to their miniaturization, easy implementation in analytical process and automation which allow for the standardization of the final product.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Engenharia Tecidual , Animais , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/normas , Terapia Genética/métodos , Terapia Genética/normas , Controle de Qualidade , Engenharia Tecidual/métodos , Engenharia Tecidual/normas
11.
Eur J Cell Biol ; 103(3): 151442, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986342

RESUMO

Urine-derived renal epithelial cells (URECs) are highly voided after kidney transplant and express typical kidney markers, including markers of kidney epithelial progenitor cells. Recently URECs have shown promising immunomodulatory properties when cultured with Peripheral Blood Mononuclear Cells (PBMCs), promoting an increase in the T regulatory cells. In vivo, kidney cells are highly exposed to damage associated molecules during both acute and chronic kidney injury. Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most -known early marker of acute and chronic kidney damage. However, its role on the evolution of renal damage has not yet been fully described, nor has its impact on the characteristics of renal-derived cells during in vitro culture. The aim of this study is to investigate the effect of NGAL on the characteristics of URECs isolated after kidney transplant, by exposing these cells to the treatment with NGAL during in vitro culture and evaluating its effect on UREC viability, proliferation, and immunomodulatory potential. The exposure of URECs to NGAL reduced their viability and proliferative capacity, promoting the onset of apoptosis. The immunomodulatory properties of URECs were partially inhibited by NGAL, without affecting the increase of Treg cells observed during UREC-PBMCs coculture. These results suggest that the exposure to NGAL may compromise some features of kidney stem and specialized cell types, reducing their viability, increasing apoptosis, and partially altering their immunomodulatory properties. Thus, NGAL could represent a target for approaches acting on its inhibition or reduction to improve functional recovery.


Assuntos
Células Epiteliais , Transplante de Rim , Lipocalina-2 , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Rim/citologia , Rim/metabolismo , Lipocalina-2/metabolismo
12.
Talanta ; 276: 126216, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761653

RESUMO

Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.


Assuntos
Âmnio , Vesículas Extracelulares , Células-Tronco Mesenquimais , Secretoma , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Secretoma/metabolismo , Âmnio/química , Âmnio/citologia , Âmnio/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Controle de Qualidade , Células Cultivadas
13.
Blood Purif ; 35(1-3): 187-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23485859

RESUMO

BACKGROUND: The effects of vitamin D receptor (VDR) and osteocalcin (OC) expression as well as VDR agonist (VDRA) therapy on circulating endothelial progenitor cells (EPCs) has not been elucidated yet. METHODS: We therefore analyzed EPCs in 30 healthy controls and 82 patients undergoing dialysis (no VDRA therapy: 28; oral calcitriol: 30, and intravenous paricalcitol, PCTA: 24). The percentage of EPCs (CD34+/CD133-/KDR+/CD45-) expressing VDR or OC, and VDR and OC expression defined by mean fluorescence intensity (MFI) were analyzed using flow cytometry. The in vitro effect of VDRAs was evaluated in EPCs isolated from each patient group. RESULTS: The percentage of VDR+ EPCs correlated positively with VDRA therapy and 25(OH)D, and negatively with diabetes, C-reactive protein, hemoglobin and osteopontin. VDR-MFI correlated positively with VDRA therapy, parathyroid hormone (PTH) and 25(OH)D, and negatively with diabetes and osteopontin. The percentage of OC+ EPCs correlated positively with the calcium score, PTH and phosphate, and negatively with 25(OH)D. OC-MFI correlated positively with calcium score, PTH, phosphate and hemoglobin, and negatively with albumin, 25(OH)D and osteopontin. Cell cultures from patients without VDRA therapy had the highest levels of calcium deposition and OC expression, which both significantly decreased following in vitro VDRA administration: in particular extracellular calcium deposition was only reduced by adding PCTA. CONCLUSIONS: Our data suggest that 25(OH)D serum levels and VDRA therapy influence VDR and OC expression on circulating EPCs. Since OC expression may contribute to vascular calcification, we hypothesize a putative protective role of VDRA therapy.


Assuntos
Células Endoteliais/efeitos dos fármacos , Complexo Mediador/farmacologia , Osteocalcina/genética , Receptores de Calcitriol/genética , Diálise Renal , Insuficiência Renal Crônica/tratamento farmacológico , Células-Tronco/efeitos dos fármacos , 25-Hidroxivitamina D 2/sangue , Antígenos CD/sangue , Antígenos CD/genética , Proteína C-Reativa , Cálcio/sangue , Estudos de Casos e Controles , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteocalcina/sangue , Osteopontina/sangue , Osteopontina/genética , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/genética , Receptores de Calcitriol/sangue , Insuficiência Renal Crônica/sangue , Células-Tronco/metabolismo , Células-Tronco/patologia
14.
Life (Basel) ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37374085

RESUMO

Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches. Among this class of compounds, Plumbagin, a plant-derived product, has shown interesting counteracting effects in many inflammation models. However, scientific knowledge about the beneficial effect of Plumbagin should be comprehensively reported before candidating this natural molecule into a future drug against specific human diseases. In this review, the most relevant mechanisms in which Plumbagin plays a role in the process of inflammation were summarized. Other relevant bioactive effects were reviewed to provide a complete and compact scenario of Plumbagin's potential therapeutic significance.

15.
Biomolecules ; 13(6)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37371551

RESUMO

Oxidative stress (OS) occurs when the production of reactive oxygen species (ROS) is not balanced by the body's antioxidant defense system. OS can profoundly affect cellular health and function. ROS can have a profound negative impact on cells that undergo a predestined and time-regulated process of proliferation or differentiation, such as perinatal stem cells. Due to the large-scale employment of these immunotolerant stem cells in regenerative medicine, it is important to reduce OS to prevent them from losing function and increase their application in the regenerative medicine field. This goal can be achieved through a variety of strategies, such as the use of antioxidants and other compounds that can indirectly modulate the antioxidant defense system by enhancing cellular stress response pathways, including autophagy and mitochondrial function, thereby reducing ROS levels. This review aims to summarize information regarding OS mechanisms in perinatal stem cells and possible strategies for reducing their deleterious effects.


Assuntos
Antioxidantes , Medicina Regenerativa , Gravidez , Feminino , Humanos , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Diferenciação Celular
16.
Bioengineering (Basel) ; 10(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36829683

RESUMO

Type 1 diabetes mellitus (T1DM) is a complex metabolic disease characterized by a massive loss of insulin-producing cells due to an autoimmune reaction. Currently, daily subcutaneous administration of exogenous insulin is the only effective treatment. Therefore, in recent years considerable interest has been given to stem cell therapy and in particular to the use of three-dimensional (3D) cell cultures to better reproduce in vivo conditions. The goal of this study is to provide a reliable cellular model that could be investigated for regenerative medicine applications for the replacement of insulin-producing cells in T1DM. To pursue this aim we create a co-culture spheroid of amniotic epithelial cells (AECs) and Wharton's jelly mesenchymal stromal cells (WJ-MSCs) in a one-to-one ratio. The resulting co-culture spheroids were analyzed for viability, extracellular matrix production, and hypoxic state in both early- and long-term cultures. Our results suggest that co-culture spheroids are stable in long-term culture and are still viable with a consistent extracellular matrix production evaluated with immunofluorescence staining. These findings suggest that this co-culture may potentially be differentiated into endo-pancreatic cells for regenerative medicine applications in T1DM.

17.
Bioengineering (Basel) ; 10(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36829691

RESUMO

The neoplastic Hodgkin-Reed-Sternberg (HRS) cells in Hodgkin lymphoma (HL) represent only 1-10% of cells and are surrounded by an inflammatory microenvironment. The HL cytokine network is a key point for the proliferation of HRS cells and for the maintenance of an advantageous microenvironment for HRS survival. In the tumor microenvironment (TME), the fibroblasts are involved in crosstalk with HRS cells. The aim of this work was to study the effect of lymphoma cell conditioned medium on a fibroblast cell population and evaluate modifications of cell morphology and proliferation. Hodgkin lymphoma-derived medium was used to obtain a population of "conditioned" fibroblasts (WS-1 COND). Differences in biophysical parameters were detected by the innovative device Celector®. Fibroblast-HL cells interactions were reproduced in 3D co-culture spheroids. WS-1 COND showed a different cellular morphology with an enlarged cytoplasm and enhanced metabolism. Area and diameter cell values obtained by Celector® measurement were increased. Co-culture spheroids created with WS-1 COND showed a tighter aggregation than those with non-conditioned WS-1. The presence of soluble factors derived from HRS cells in the conditioned medium was adequate for the proliferation of fibroblasts and conditioned fibroblasts in a 3D HL model allowed to develop a representative model of the in vivo TME.

18.
Cells ; 12(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371100

RESUMO

Kidney transplantation is a lifesaving procedure for patients with end-stage kidney disease (ESKD). Organs derived from donation after cardiac death (DCD) are constantly increasing; however, DCD often leads to ischaemia-reperfusion (IR) and Acute Kidney Injury (AKI) events. These phenomena increase kidney cell turnover to replace damaged cells, which are voided in urine. Urine-derived renal epithelial cells (URECs) are rarely present in the urine of healthy subjects, and their loss has been associated with several kidney disorders. The present study aimed to characterize the phenotype and potential applications of URECs voided after transplant. The results indicate that URECs are highly proliferating cells, expressing several kidney markers, including markers of kidney epithelial progenitor cells. Since the regulation of the immune response is crucial in organ transplantation and new immunoregulatory strategies are needed, UREC immunomodulatory properties were investigated. Co-culture with peripheral blood mononuclear cells (PBMCs) revealed that URECs reduced PBMC apoptosis, inhibited lymphocyte proliferation, increased T regulatory (Treg) cells and reduced T helper 1 (Th1) cells. URECs from transplanted patients represent a promising cell source for the investigation of regenerative processes occurring in kidneys, and for cell-therapy applications based on the regulation of the immune response.


Assuntos
Injúria Renal Aguda , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Biomarcadores/metabolismo , Imunidade , Células Epiteliais/metabolismo
19.
Front Bioeng Biotechnol ; 11: 1258753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033821

RESUMO

Many preclinical studies have shown that birth-associated tissues, cells and their secreted factors, otherwise known as perinatal derivatives (PnD), possess various biological properties that make them suitable therapeutic candidates for the treatment of numerous pathological conditions. Nevertheless, in the field of PnD research, there is a lack of critical evaluation of the PnD standardization process: from preparation to in vitro testing, an issue that may ultimately delay clinical translation. In this paper, we present the PnD e-questionnaire developed to assess the current state of the art of methods used in the published literature for the procurement, isolation, culturing preservation and characterization of PnD in vitro. Furthermore, we also propose a consensus for the scientific community on the minimal criteria that should be reported to facilitate standardization, reproducibility and transparency of data in PnD research. Lastly, based on the data from the PnD e-questionnaire, we recommend to provide adequate information on the characterization of the PnD. The PnD e-questionnaire is now freely available to the scientific community in order to guide researchers on the minimal criteria that should be clearly reported in their manuscripts. This review is a collaborative effort from the COST SPRINT action (CA17116), which aims to guide future research to facilitate the translation of basic research findings on PnD into clinical practice.

20.
J Cancer Res Clin Oncol ; 148(4): 753-765, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091834

RESUMO

PURPOSE: Three dimensional (3D) "in vitro" models are progressively being applied to investigate tumor cell biology and the interaction of cancer cells with tumor microenvironment under conditions more similar and realistic to "in vivo" behavior than standard bidimensional (2D) cultures. METHODS: In the last years, different methods have been developed to create spheroids and organoids and each technique has advantages and limitations also based on individual needs and cell types used. This review offers an overview of methodologies used for 3D systems: scaffold-free and scaffold-based methods up to bioreactors and organ-on-chip models. RESULTS: The principal goal for researchers is to select the 3D system that best suits their needs and that reflects the tumor model they want to study. A large chapter is dedicated to the application of these models to lymphomas' study, a neoplasm still little explored in the 3D field. CONCLUSION: These innovative and advanced models may represent new tools for cancer research and pre-clinical studies of new therapies in the perspective of precision medicine.


Assuntos
Linfoma , Neoplasias , Humanos , Neoplasias/patologia , Organoides/patologia , Medicina de Precisão , Esferoides Celulares/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa