Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Surg Endosc ; 36(11): 8568-8591, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36171451

RESUMO

BACKGROUND: Personalized medicine requires the integration and analysis of vast amounts of patient data to realize individualized care. With Surgomics, we aim to facilitate personalized therapy recommendations in surgery by integration of intraoperative surgical data and their analysis with machine learning methods to leverage the potential of this data in analogy to Radiomics and Genomics. METHODS: We defined Surgomics as the entirety of surgomic features that are process characteristics of a surgical procedure automatically derived from multimodal intraoperative data to quantify processes in the operating room. In a multidisciplinary team we discussed potential data sources like endoscopic videos, vital sign monitoring, medical devices and instruments and respective surgomic features. Subsequently, an online questionnaire was sent to experts from surgery and (computer) science at multiple centers for rating the features' clinical relevance and technical feasibility. RESULTS: In total, 52 surgomic features were identified and assigned to eight feature categories. Based on the expert survey (n = 66 participants) the feature category with the highest clinical relevance as rated by surgeons was "surgical skill and quality of performance" for morbidity and mortality (9.0 ± 1.3 on a numerical rating scale from 1 to 10) as well as for long-term (oncological) outcome (8.2 ± 1.8). The feature category with the highest feasibility to be automatically extracted as rated by (computer) scientists was "Instrument" (8.5 ± 1.7). Among the surgomic features ranked as most relevant in their respective category were "intraoperative adverse events", "action performed with instruments", "vital sign monitoring", and "difficulty of surgery". CONCLUSION: Surgomics is a promising concept for the analysis of intraoperative data. Surgomics may be used together with preoperative features from clinical data and Radiomics to predict postoperative morbidity, mortality and long-term outcome, as well as to provide tailored feedback for surgeons.


Assuntos
Aprendizado de Máquina , Cirurgiões , Humanos , Morbidade
2.
Sensors (Basel) ; 18(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127311

RESUMO

Accurate recognition and understating of human emotions is an essential skill that can improve the collaboration between humans and machines. In this vein, electroencephalogram (EEG)-based emotion recognition is considered an active research field with challenging issues regarding the analyses of the nonstationary EEG signals and the extraction of salient features that can be used to achieve accurate emotion recognition. In this paper, an EEG-based emotion recognition approach with a novel time-frequency feature extraction technique is presented. In particular, a quadratic time-frequency distribution (QTFD) is employed to construct a high resolution time-frequency representation of the EEG signals and capture the spectral variations of the EEG signals over time. To reduce the dimensionality of the constructed QTFD-based representation, a set of 13 time- and frequency-domain features is extended to the joint time-frequency-domain and employed to quantify the QTFD-based time-frequency representation of the EEG signals. Moreover, to describe different emotion classes, we have utilized the 2D arousal-valence plane to develop four emotion labeling schemes of the EEG signals, such that each emotion labeling scheme defines a set of emotion classes. The extracted time-frequency features are used to construct a set of subject-specific support vector machine classifiers to classify the EEG signals of each subject into the different emotion classes that are defined using each of the four emotion labeling schemes. The performance of the proposed approach is evaluated using a publicly available EEG dataset, namely the DEAPdataset. Moreover, we design three performance evaluation analyses, namely the channel-based analysis, feature-based analysis and neutral class exclusion analysis, to quantify the effects of utilizing different groups of EEG channels that cover various regions in the brain, reducing the dimensionality of the extracted time-frequency features and excluding the EEG signals that correspond to the neutral class, on the capability of the proposed approach to discriminate between different emotion classes. The results reported in the current study demonstrate the efficacy of the proposed QTFD-based approach in recognizing different emotion classes. In particular, the average classification accuracies obtained in differentiating between the various emotion classes defined using each of the four emotion labeling schemes are within the range of 73.8 % ⁻ 86.2 % . Moreover, the emotion classification accuracies achieved by our proposed approach are higher than the results reported in several existing state-of-the-art EEG-based emotion recognition studies.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Emoções , Máquina de Vetores de Suporte , Feminino , Humanos , Masculino
3.
Sensors (Basel) ; 17(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832513

RESUMO

This paper presents an EEG-based brain-computer interface system for classifying eleven motor imagery (MI) tasks within the same hand. The proposed system utilizes the Choi-Williams time-frequency distribution (CWD) to construct a time-frequency representation (TFR) of the EEG signals. The constructed TFR is used to extract five categories of time-frequency features (TFFs). The TFFs are processed using a hierarchical classification model to identify the MI task encapsulated within the EEG signals. To evaluate the performance of the proposed approach, EEG data were recorded for eighteen intact subjects and four amputated subjects while imagining to perform each of the eleven hand MI tasks. Two performance evaluation analyses, namely channel- and TFF-based analyses, are conducted to identify the best subset of EEG channels and the TFFs category, respectively, that enable the highest classification accuracy between the MI tasks. In each evaluation analysis, the hierarchical classification model is trained using two training procedures, namely subject-dependent and subject-independent procedures. These two training procedures quantify the capability of the proposed approach to capture both intra- and inter-personal variations in the EEG signals for different MI tasks within the same hand. The results demonstrate the efficacy of the approach for classifying the MI tasks within the same hand. In particular, the classification accuracies obtained for the intact and amputated subjects are as high as 88 . 8 % and 90 . 2 % , respectively, for the subject-dependent training procedure, and 80 . 8 % and 87 . 8 % , respectively, for the subject-independent training procedure. These results suggest the feasibility of applying the proposed approach to control dexterous prosthetic hands, which can be of great benefit for individuals suffering from hand amputations.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Mãos , Humanos , Imaginação , Interface Usuário-Computador
4.
Front Neurosci ; 15: 733673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880720

RESUMO

Joint applications of virtual reality (VR) systems and electroencephalography (EEG) offer numerous new possibilities ranging from behavioral science to therapy. VR systems allow for highly controlled experimental environments, while EEG offers a non-invasive window to brain activity with a millisecond-ranged temporal resolution. However, EEG measurements are highly susceptible to electromagnetic (EM) noise and the influence of EM noise of head-mounted-displays (HMDs) on EEG signal quality has not been conclusively investigated. In this paper, we propose a structured approach to test HMDs for EM noise potentially harmful to EEG measures. The approach verifies the impact of HMDs on the frequency- and time-domain of the EEG signal recorded in healthy subjects. The verification task includes a comparison of conditions with and without an HMD during (i) an eyes-open vs. eyes-closed task, and (ii) with respect to the sensory- evoked brain activity. The approach is developed and tested to derive potential effects of two commercial HMDs, the Oculus Rift and the HTC Vive Pro, on the quality of 64-channel EEG measurements. The results show that the HMDs consistently introduce artifacts, especially at the line hum of 50 Hz and the HMD refresh rate of 90 Hz, respectively, and their harmonics. The frequency range that is typically most important in non-invasive EEG research and applications (<50 Hz) however, remained largely unaffected. Hence, our findings demonstrate that high-quality EEG recordings, at least in the frequency range up to 50 Hz, can be obtained with the two tested HMDs. However, the number of commercially available HMDs is constantly rising. We strongly suggest to thoroughly test such devices upfront since each HMD will most likely have its own EM footprint and this article provides a structured approach to implement such tests with arbitrary devices.

5.
Neurosci Lett ; 698: 113-120, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30630057

RESUMO

Decoding the movements of different fingers within the same hand can increase the control's dimensions of the electroencephalography (EEG)-based brain-computer interface (BCI) systems. This in turn enables the subjects who are using assistive devices to better perform various dexterous tasks. However, decoding the movements performed by different fingers within the same hand by analyzing the EEG signals is considered a challenging task. In this paper, we present a new EEG-based BCI system for decoding the movements of each finger within the same hand based on analyzing the EEG signals using a quadratic time-frequency distribution (QTFD), namely the Choi-William distribution (CWD). In particular, the CWD is employed to characterize the time-varying spectral components of the EEG signals and extract features that can capture movement-related information encapsulated within the EEG signals. The extracted CWD-based features are used to build a two-layer classification framework that decodes finger movements within the same hand. The performance of the proposed system is evaluated by recording the EEG signals for eighteen healthy subjects while performing twelve finger movements using their right hands. The results demonstrate the efficacy of the proposed system to decode finger movements within the same hand of each subject.


Assuntos
Eletroencefalografia , Dedos/fisiologia , Mãos/fisiologia , Movimento/fisiologia , Adulto , Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Feminino , Humanos , Imaginação/fisiologia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa