Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 62(12): 1877-1887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606183

RESUMO

Somatic sequence variants are associated with cancer diagnosis, prognostic stratification, and treatment response. Variant allele frequency (VAF), the percentage of sequence reads with a specific DNA variant over the read depth at that locus, has been used as a metric to quantify mutation rates in these applications. VAF has the potential for feature detection by reflecting changes in tumor clonal composition across treatments or time points. Although there are several packages, including Genome Analysis Toolkit and VarScan, designed for variant calling and rare mutation identification, there is no readily available package for comparing VAFs among and between groups to identify loci of interest. To this end, we have developed the R package easyVAF, which includes parametric and nonparametric tests to compare VAFs among multiple groups. It is accompanied by an interactive R Shiny app. With easyVAF, the investigator has the option between three statistical tests to maximize power while maintaining an acceptable type I error rate. This paper presents our proposed pipeline for VAF analysis, from quality checking to group comparison. We evaluate our method in a wide range of simulated scenarios and show that choosing the appropriate test to limit the type I error rate is critical. For situations where data is sparse, we recommend comparing VAFs with the beta-binomial likelihood ratio test over Fisher's exact test and Pearson's χ2 test.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Genoma , Frequência do Gene
2.
Mol Carcinog ; 59(7): 830-838, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275343

RESUMO

The humanized mouse (HM) has emerged as a valuable animal model in cancer research. Engrafted with components of a human immune system and subsequently implanted with tumor tissue from cell lines or in the form of patient-derived xenografts, the HM provides a unique platform in which the tumor microenvironment (TME) can be evaluated in vivo. This model may also be beneficial in the assessment of potential cancer treatments including immune checkpoint inhibitors. However, to maximize its utility, researchers need to understand the critical factors necessary to ensure that the tumor immune interactions in the HM are representative of those within cancer patients. In most current HM models, the human T cells residing in the HM are educated in a murine thymus, allogeneic to implanted tumor tissue, and/or alloreactive to mouse tissues, making their interaction and reactivity with tumor cells suspect. There are several strategies underway to harmonize the immune-tumor environment in the HM. Once the essential components of the HM-tumor TME interface have been identified and understood, the HM model will permit not only the discovery of effective immunotherapy treatments, but it can be used to predict patient responses to great clinical benefit.


Assuntos
Imunoterapia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
3.
Stem Cell Reports ; 18(4): 829-840, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963390

RESUMO

The thymus is critical for the establishment of a functional and self-tolerant adaptive immune system but involutes with age, resulting in reduced naive T cell output. Generation of a functional human thymus from human pluripotent stem cells (hPSCs) is an attractive regenerative strategy. Direct differentiation of thymic epithelial progenitors (TEPs) from hPSCs has been demonstrated in vitro, but functional thymic epithelial cells (TECs) only form months after transplantation of TEPs in vivo. We show the generation of TECs in vitro in isogenic stem cell-derived thymic organoids (sTOs) consisting of TEPs, hematopoietic progenitor cells, and mesenchymal cells, differentiated from the same hPSC line. sTOs support T cell development, express key markers of negative selection, including the autoimmune regulator (AIRE) protein, and facilitate regulatory T cell development. sTOs provide the basis for functional patient-specific thymic organoid models, allowing for the study of human thymus function, T cell development, and transplant immunity.


Assuntos
Células-Tronco Pluripotentes , Timo , Humanos , Linfócitos T , Células Epiteliais/metabolismo , Diferenciação Celular/fisiologia , Organoides
4.
J Natl Cancer Inst ; 115(11): 1392-1403, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389416

RESUMO

BACKGROUND: The programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) are validated cancer targets; however, emerging mechanisms and impact of PD-L1 intracellular signaling on cancer behavior are poorly understood. METHODS: We investigated the cancer cell intrinsic role of PD-L1 in multiple patient-derived models in vitro and in vivo. PD-L1 overexpression, knockdown, and PD-L1 intracellular domain (PD-L1-ICD) deletion (Δ260-290PD-L1) models were assessed for key cancer properties: clonogenicity, motility, invasion, and immune evasion. To determine how PD-L1 transduces signals intracellularly, we used the BioID2 platform to identify the PD-L1 intracellular interactome. Both human papillomavirus-positive and negative patient-derived xenografts were implanted in NOD-scid-gamma and humanized mouse models to investigate the effects of recombinant PD-1, anti-PD-L1, and anti-signal transducer and activator of transcription 3 (STAT3) in vivo. RESULTS: PD-L1 intracellular signaling increased clonogenicity, motility, and invasiveness in multiple head and neck squamous cell carcinoma (HNSCC) models, and PD-1 binding enhanced these effects. Protein proximity labeling revealed the PD-L1 interactome, distinct for unbound and bound PD-1, which initiated cancer cell-intrinsic signaling. PD-L1 binding partners interleukin enhancer binding factors 2 and 3 (ILF2-ILF3) transduced their effect through STAT3. Δ260-290PD-L1 disrupted signaling and reversed pro-growth properties. In humanized HNSCC in vivo models bearing T-cells, PD-1 binding triggered PD-L1 signaling, and dual PD-L1 and STAT3 inhibition were required to achieve tumor control. CONCLUSIONS: Upon PD-1 binding, the PD-L1 extracellular and intracellular domains exert a synchronized effect to promote immune evasion by inhibiting T-cell function while simultaneously enhancing cancer cell-invasive properties.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Camundongos , Neoplasias de Cabeça e Pescoço/genética , Camundongos Endogâmicos NOD , Receptor de Morte Celular Programada 1 , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
5.
Mol Cancer Res ; 19(9): 1476-1485, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33986121

RESUMO

Metastatic disease in pheochromocytomas and paragangliomas (PCC/PGL) is not well-understood. The Cancer Genome Atlas discovered recurrent MAML3 fusion genes in a subset of tumors that lacked known germline or somatic driver mutations and were associated with aggressive disease. Here, we aimed to investigate the role of MAML3 in tumorigenesis. Human PCC/PGLs were used for IHC and genetic analysis. Three neuroendocrine tumor cell lines, SK-N-SH, QGP-1, and BON-1, were transiently transfected with MAML3 (FL) or exon 1 deleted MAML3 (dEx1; mimicking the fusion), and biologic effects of overexpression were examined in vitro. We found 7% (4/55) of human PCC/PGL have UBTF∼MAML3 fusions and all were sporadic cases with metastatic disease. Fusion-positive tumors had intense MAML3 nuclear staining and increased ß-catenin by IHC and showed increased WNT4 expression. In vitro, overexpression of FL and dEx1 MAML3 increased invasion in SK-N-SH, QGP-1, and BON-1 (all P < 0.05) and increased soft-agar colony formation in QGP-1 and BON-1 (all P < 0.05). Cotransfection with FL or dEx1 MAML3 and ß-catenin increased TCF/LEF promoter activation by luciferase activity and coimmunoprecipitation confirmed interaction between MAML3 and ß-catenin. These data suggest MAML3 is involved in WNT signaling pathway activation. In summary, UBTF∼MAML3 fusions are present in a subset of PCC/PGL and associated with metastatic disease without other known drivers. MAML3 overexpression led to increased tumorigenicity in neuroendocrine tumor cells and the mechanism of action may involve WNT signaling pathways. IMPLICATIONS: MAML3 increases tumorigenicity and invasion in neuroendocrine tumor cells and may be a prognostic marker for aggressive disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Tumores Neuroendócrinos/patologia , Proteínas de Fusão Oncogênica/metabolismo , Paraganglioma/patologia , Feocromocitoma/patologia , Transativadores/metabolismo , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Mutação , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Proteínas de Fusão Oncogênica/genética , Paraganglioma/genética , Paraganglioma/metabolismo , Feocromocitoma/genética , Feocromocitoma/metabolismo , Transativadores/genética , Transcriptoma , Células Tumorais Cultivadas , Via de Sinalização Wnt
6.
Mol Cancer Res ; 19(2): 346-357, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33087417

RESUMO

Resistance to immunotherapy is a significant challenge, and the scarcity of human models hinders the identification of the underlying mechanisms. To address this limitation, we constructed an autologous humanized mouse (aHM) model with hematopoietic stem and progenitor cells (HSPC) and tumors from 2 melanoma patients progressing to immunotherapy. Unlike mismatched humanized mouse (mHM) models, generated from cord blood-derived HSPCs and tumors from different donors, the aHM recapitulates a patient-specific tumor microenvironment (TME). When patient tumors were implanted on aHM, mHM, and NOD/SCID/IL2rg-/- (NSG) cohorts, tumors appeared earlier and grew faster on NSG and mHM cohorts. We observed that immune cells differentiating in the aHM were relatively more capable of circulating peripherally, invading into tumors and interacting with the TME. A heterologous, human leukocyte antigen (HLA-A) matched cohort also yielded slower growing tumors than non-HLA-matched mHM, indicating that a less permissive immune environment inhibits tumor progression. When the aHM, mHM, and NSG cohorts were treated with immunotherapies mirroring what the originating patients received, tumor growth in the aHM accelerated, similar to the progression observed in the patients. This rapid growth was associated with decreased immune cell infiltration, reduced interferon gamma (IFNγ)-related gene expression, and a reduction in STAT3 phosphorylation, events that were replicated in vitro using tumor-derived cell lines. IMPLICATIONS: Engrafted adult HSPCs give rise to more tumor infiltrative immune cells, increased HLA matching leads to slower tumor initiation and growth, and continuing immunotherapy past progression can paradoxically lead to increased growth.


Assuntos
Imunoterapia/métodos , Melanoma/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa