Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pediatr Endocrinol Rev ; 17(2): 117-124, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31763804

RESUMO

OBJECTIVES: We analyzed primary school performance of girls with Turner syndrome (TS) in two distinct countries to ascertain if the cognitive phenotype of TS causes selective learning difficulties. METHODS: The cohort comprised of 44 Czech and 50 Egyptian girls with TS who attended public schools. School reports from grades 1 to 9 were obtained retrospectively from Czech participants with TS. Only recent school reports were obtained from Egyptian participants. Two controls per participant were requested - biological sisters and/or female classmates. The results were converted into a 5-point scale (1-excellent; 5-unsatisfactory). RESULTS: Analysis of longitudinal Czech data displayed a strong time component in both subjects and controls. Showing better points in lower grades with its gradual worsening as the education complexity increased. In contrast, there was a strong statistically significant difference between groups in Mathematics (p=0.0041, p=0.0205 after Bonferroni correction) and this difference increased over time. The points for Mathematics did not differ in grades 1+2 (0.05 difference in mean grade between the two groups), however, they differed by 0.28 in grades 6+7 and by 0.32 in grades 8+9. While slightly different in character (cross-sectional vs. longitudinal), the Egyptian cohort data confirmed our findings, showing no difference in general school performance but having similar trends in Mathematics (grades 1+2: 0.11, grades 6+7: 0.54, grades 8+9: 0.68; p=0.0058, p=0.029 after Bonferroni correction). CONCLUSION: Excluding results in Mathematics, which showed pronounced worsening in relation to age in comparison with unaffected controls, girls with TS performed similarly to their controls.


Assuntos
Síndrome de Turner , Adolescente , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Matemática , Estudos Retrospectivos
4.
Horm Res Paediatr ; 97(2): 106-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37285827

RESUMO

BACKGROUND: The thalidomide disaster resulted in tremendous congenital malformations in more than 10,000 children in the late 1950s and early 1960s. SUMMARY: Although numerous putative mechanisms were proposed to explain thalidomide teratogenicity, it was confirmed only recently that thalidomide, rather its derivative 5-hydroxythalidomide (5HT) in a complex with the cereblon protein, interferes with early embryonic transcriptional regulation. 5HT induces selective degradation of SALL4, a principal transcriptional factor of early embryogenesis. Genetic syndromes caused by pathogenic variants of the SALL4 gene phenocopy thalidomide embryopathy with congenital malformations ranging from phocomelia, reduced radial ray, to defects of the heart, kidneys, ear, eye, and possibly cerebral midline and pituitary. SALL4 interacts with TBX5 and a handful of other transcriptional regulators and downregulates the Sonic hedgehog signaling pathway. Cranial midline defects, microcephaly, and short stature due to growth hormone deficiency have been occasionally reported in children carrying SALL4 pathogenic variants associated with generalized stunting of growth rather than just the loss of height attributable to the shortening of leg bones in many children with thalidomide embryopathy. KEY MESSAGES: Thus, SALL4 joins the candidate gene list for monogenic syndromic pituitary insufficiency. In this review, we summarize the journey from the thalidomide disaster through the functions of the SALL4 gene to its link to the hormonal regulation of growth.


Assuntos
Anormalidades Múltiplas , Doenças Fetais , Talidomida , Fatores de Transcrição , Humanos , Anormalidades Múltiplas/induzido quimicamente , Anormalidades Múltiplas/genética , Proteínas Hedgehog , Talidomida/efeitos adversos , Fatores de Transcrição/genética , Extremidade Superior
5.
Horm Res Paediatr ; 97(2): 203-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37611564

RESUMO

INTRODUCTION: The SALL4 gene encodes a transcription factor that is essential for early embryonic cellular differentiation of the epiblast and primitive endoderm. It is required for the development of neural tissue, kidney, heart, and limbs. Pathogenic SALL4 variants cause Duane-radial ray syndrome (Okihiro syndrome), acro-renal-ocular syndrome, and Holt-Oram syndrome. We report a family with vertical transmission of a SALL4 pathogenic variant leading to radial hypoplasia and kidney dystopia in several generations with additional growth hormone deficiency (GHD) in the proband. CASE PRESENTATION: Our male proband was born at the 39th week of gestation. He was born small for gestational age (SGA; birth weight 2,550 g, -2.2 SDS; length 47 cm, -2.0 SDS). He had bilateral asymmetrical radial ray malformation (consisting of radial hypoplasia, ulnar flexure, and bilateral aplasia of the thumb) and pelvic kidney dystopia, but no cardiac malformations, clubfoot, ocular coloboma, or Duane anomaly. He was examined for progressive short stature at the age of 3.9 years, where his IGF-1 was 68 µg/L (-1.0 SD), and growth hormone (GH) after stimulation 6.2 µg/L. Other pituitary hormones were normal. A brain CT revealed normal morphology of the cerebral midline and the pituitary. He had a dental anomaly - a central mandibular ectopic canine. MRI could not be done due to the presence of metal after multiple corrective plastic surgeries of his hands. His mother's and father's heights are 152.3 cm (-2.4 SD) and 177.8 cm (-0.4 SD), respectively. His father has a milder malformation of the forearm. The affected paternal grandfather (height 164 cm; -2.3 SD) has a radial ray defect with missing opposition of the thumb. The family reports a similar phenotype of radial dysplasia in the paternal grandfather's mother. The proband started GH therapy at age 6.5 years when his height was 109 cm (-2.8 SDS) and he experienced catch-up growth as expected in GHD. Puberty started spontaneously at the age of 12.5 years. At age 13, his height was 158.7 cm (-0.2 SDS). Whole-exome sequencing revealed a nonsense variant in the SALL4 gene c.1717C>T (p.Arg573Ter) in the proband, his father, and paternal grandfather. CONCLUSION: This is the first observation of a patient with a congenital upper limb defect due to a pathogenic SALL4 variant who has isolated GHD with no apparent cerebral or facial midline anomaly and has been successfully treated with growth hormone.


Assuntos
Síndrome da Retração Ocular , Hormônio do Crescimento Humano , Hipopituitarismo , Pré-Escolar , Humanos , Masculino , Síndrome da Retração Ocular/genética , Síndrome da Retração Ocular/patologia , Hipopituitarismo/genética , Rim/patologia , Fenótipo , Fatores de Transcrição/genética , Extremidade Superior/patologia , Adulto
6.
Horm Res Paediatr ; 97(1): 40-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37019085

RESUMO

INTRODUCTION: Among children born small for gestational age, 10-15% fail to catch up and remain short (SGA-SS). The underlying mechanisms are mostly unknown. We aimed to decipher genetic aetiologies of SGA-SS within a large single-centre cohort. METHODS: Out of 820 patients treated with growth hormone (GH), 256 were classified as SGA-SS (birth length and/or birth weight <-2 SD for gestational age and life-minimum height <-2.5 SD). Those with the DNA triplet available (child and both parents) were included in the study (176/256). Targeted testing (karyotype/FISH/MLPA/specific Sanger sequencing) was performed if a specific genetic disorder was clinically suggestive. All remaining patients underwent MS-MLPA to identify Silver-Russell syndrome, and those with unknown genetic aetiology were subsequently examined using whole-exome sequencing or targeted panel of 398 growth-related genes. Genetic variants were classified using ACMG guidelines. RESULTS: The genetic aetiology was elucidated in 74/176 (42%) children. Of these, 12/74 (16%) had pathogenic or likely pathogenic (P/LP) gene variants affecting pituitary development (LHX4, OTX2, PROKR2, PTCH1, POU1F1), the GH-IGF-1 or IGF-2 axis (GHSR, IGFALS, IGF1R, STAT3, HMGA2), 2/74 (3%) the thyroid axis (TRHR, THRA), 17/74 (23%) the cartilaginous matrix (ACAN, various collagens, FLNB, MATN3), and 7/74 (9%) the paracrine chondrocyte regulation (FGFR3, FGFR2, NPR2). In 12/74 (16%), we revealed P/LP affecting fundamental intracellular/intranuclear processes (CDC42, KMT2D, LMNA, NSD1, PTPN11, SRCAP, SON, SOS1, SOX9, TLK2). SHOX deficiency was found in 7/74 (9%), Silver-Russell syndrome in 12/74 (16%) (11p15, UPD7), and miscellaneous chromosomal aberrations in 5/74 (7%) children. CONCLUSIONS: The high diagnostic yield sheds a new light on the genetic landscape of SGA-SS, with a central role for the growth plate with substantial contributions from the GH-IGF-1 and thyroid axes and intracellular regulation and signalling.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Síndrome de Silver-Russell , Criança , Recém-Nascido , Humanos , Fator de Crescimento Insulin-Like I , Transtornos do Crescimento/genética , Transtornos do Crescimento/diagnóstico , Síndrome de Silver-Russell/genética , Idade Gestacional , Recém-Nascido Pequeno para a Idade Gestacional , Hormônio do Crescimento Humano/genética , Estatura/genética , Proteína de Homoeobox de Baixa Estatura
7.
Front Endocrinol (Lausanne) ; 14: 1130580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033216

RESUMO

Introduction: Automated bone age assessment has recently become increasingly popular. The aim of this study was to assess the agreement between automated and manual evaluation of bone age using the method according to Tanner-Whitehouse (TW3) and Greulich-Pyle (GP). Methods: We evaluated 1285 bone age scans from 1202 children (657 scans from 612 boys) by using both manual and automated (TW3 as well as GP) bone age assessment. BoneXpert software versions 2.4.5.1. (BX2) and 3.2.1. (BX3) (Visiana, Holte, Denmark) were compared with manual evaluation using root mean squared error (RMSE) analysis. Results: RMSE for BX2 was 0.57 and 0.55 years in boys and 0.72 and 0.59 years in girls, respectively for TW3 and GP. For BX3, RMSE was 0.51 and 0.68 years in boys and 0.49 and 0.52 years in girls, respectively for TW3 and GP. Sex- and age-specific analysis for BX2 identified the largest differences between manual and automated TW3 evaluation in girls between 6-7, 12-13, 13-14 and 14-15 years, with RMSE 0.88, 0.81, 0.92 and 0.84 years, respectively. The BX3 version showed better agreement with manual TW3 evaluation (RMSE 0.64, 0.45, 0.46 and 0.57). Conclusion: The latest version of the BoneXpert software provides improved and clinically sufficient agreement with manual bone age evaluation in children of both sexes compared to the previous version and may be used for routine bone age evaluation in non-selected cases in pediatric endocrinology care.


Assuntos
Determinação da Idade pelo Esqueleto , Software , Adolescente , Criança , Feminino , Humanos , Masculino , Determinação da Idade pelo Esqueleto/métodos , População Branca
8.
Horm Res Paediatr ; 95(1): 1-11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34847552

RESUMO

Consanguineous families have often played a role in the discovery of novel genes, especially in paediatric endocrinology. At this time, it has been estimated that over 8.5% of all children worldwide have consanguineous parents. Consanguinity is linked to demographic, cultural, and religious practises and is more common in some areas around the world than others. In children with endocrine conditions from consanguineous families, there is a greater probability that a single-gene condition with autosomal recessive inheritance is causative. From 1966 and the first description of Laron syndrome, through the discovery of the first KATP channel genes ABCC8 and KCNJ11 causing congenital hyperinsulinism (CHI) in the 1990s, to recent discoveries of mutations in YIPF5 as the first cause of monogenic diabetes due to the disruption of the endoplasmic reticulum (ER)-to-Golgi trafficking in the ß-cell and increased ER stress; positive genetic findings in children from consanguinity have been important in elucidating novel genes and mechanisms of disease, thereby expanding knowledge into disease pathophysiology. The aim of this narrative review was to shed light on the lessons learned from consanguineous pedigrees with the help of 3 fundamental endocrine conditions that represent an evolving spectrum of pathophysiological complexity - from CHI, a typically single-cell condition, to monogenic diabetes which presents with uniform biochemical parameters (hyperglycaemia and glycosuria), despite varying aetiologies, up to the genetic regulation of human growth - the most complex developmental phenomenon.


Assuntos
Hiperinsulinismo Congênito , Diabetes Mellitus , Nanismo , Criança , Hiperinsulinismo Congênito/genética , Consanguinidade , Diabetes Mellitus/genética , Humanos , Canais KATP/genética , Mutação
9.
Front Endocrinol (Lausanne) ; 13: 1102968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714562

RESUMO

Introduction: The growth hormone deficiency (GHD) diagnosis is controversial especially due to low specificity of growth hormone (GH) stimulation tests. It is therefore believed that children diagnosed with GHD form a heterogeneous group with growth disorder frequently independent on GH function. No study evaluating the complex etiology of growth failure in children with diagnosed GHD has been performed thus far. Aims: To discover genetic etiology of short stature in children with diagnosed GHD from families with short stature. Methods: Fifty-two children diagnosed with primary GHD and vertically transmitted short stature (height SDS in the child and his/her shorter parent <-2 SD) were included to our study. The GHD diagnosis was based on growth data suggestive of GHD, absence of substantial disproportionality (sitting height to total height ratio <-2 SD or >+2 SD), IGF-1 levels <0 for age and sex specific SD and peak GH concentration <10 ug/L in two stimulation tests. All children were examined using next-generation sequencing methods, and the genetic variants were subsequently evaluated by American College of Medical Genetics standards and guidelines. Results: The age of children at enrollment into the study was 11 years (median, IQR 9-14 years), their height prior to GH treatment was -3.0 SD (-3.6 to -2.8 SD), IGF-1 concentration -1.4 SD (-2.0 to -1.1 SD), and maximal stimulated GH 6.3 ug/L (4.8-7.6 ug/L). No child had multiple pituitary hormone deficiency or a midbrain region pathology. Causative variant in a gene that affects growth was discovered in 15/52 (29%) children. Of them, only 2 (13%) had a genetic variant affecting GH secretion or function (GHSR and OTX2). Interestingly, in 10 (67%) children we discovered a primary growth plate disorder (ACAN, COL1A2, COL11A1, COL2A1, EXT2, FGFR3, NF1, NPR2, PTPN11 [2x]), in one (7%) a genetic variant impairing IGF-1 action (IGFALS) and in two (12%) a variant in miscellaneous genes (SALL4, MBTPS2). Conclusions: In children with vertically transmitted short stature, genetic results frequently did not correspond with the clinical diagnosis of GH deficiency. These results underline the doubtful reliability of methods standardly used to diagnose GH deficiency.


Assuntos
Nanismo Hipofisário , Hormônio do Crescimento Humano , Adolescente , Criança , Feminino , Humanos , Masculino , Nanismo Hipofisário/diagnóstico , Nanismo Hipofisário/genética , Nanismo Hipofisário/tratamento farmacológico , Fator de Crescimento Insulin-Like I/genética , Reprodutibilidade dos Testes
10.
Horm Res Paediatr ; 93(1): 58-65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32203961

RESUMO

INTRODUCTION: Neonatal hypoglycemia due to congenital hyperinsulinism (CHI) is a potentially life-threatening condition. Biallelic pathogenic variants in KATP channel subunit genes (ABCC8, KCNJ11), causing severe forms of CHI, are more prevalent in regions with a significant rate of consanguinity and may lead to unexplained neonatal deaths. We hypothesized that KATP channel gene variants are the cause of CHI in three unrelated children from consanguineous Kurdish families with histories of four unexplained neonatal deaths with convulsions. CASES: (1) A girl presented on the 6th day of life with recurrent hypoglycemic convulsions (blood glucose 2.05 mmol/L, insulin 58 mIU/L, C-peptide 2,242 pmol/L). (2) A girl with severe developmental delay was diagnosed with CHI at 3 years of age (blood glucose 2.78 mmol/L, insulin 8.1 mIU/L, C-peptide 761 pmol/L) despite a history of recurrent hypoglycemia since neonatal age. (3) A girl presented at 3 weeks of age with convulsions and unconsciousness (blood glucose 2.5 mmol/L, insulin 14.6 mIU/L, C-peptide 523 pmol/L). Coding regions of the ABCC8 and KCNJ11 genes were tested by Sanger sequencing. Potential variants were evaluated using the American College of Medical Genetics standards. Three novel causative homozygous variants were found - p.Trp514Ter in the ABCC8 gene (Pt2), and p.Met1Val (Pt1) and p.Tyr26Ter (Pt3) in the KCNJ11 gene. CONCLUSION: CHI caused by KATP channel variants was elucidated in three children, providing a highly probable retrospective diagnosis for their deceased siblings. Future lives can be saved by timely diagnosis of CHI when encountering a neonate with unexplained seizures or other signs of recurrent and/or persistent hypoglycemia.


Assuntos
Glicemia , Hiperinsulinismo Congênito/genética , Insulina/sangue , Canais KATP/genética , Criança , Pré-Escolar , Hiperinsulinismo Congênito/sangue , Hiperinsulinismo Congênito/tratamento farmacológico , Consanguinidade , Feminino , Humanos , Lactente , Recém-Nascido , Octreotida/uso terapêutico , Linhagem , Morte Perinatal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa