Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 117(4): 751-766, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31378315

RESUMO

Available experimental techniques cannot determine high-resolution three-dimensional structures of membrane proteins under a transmembrane voltage. Hence, the mechanism by which voltage-gated cation channels couple conformational changes within the four voltage sensor domains, in response to either depolarizing or polarizing transmembrane voltages, to opening or closing of the pore domain's ion channel remains unresolved. Single-membrane specimens, composed of a phospholipid bilayer containing a vectorially oriented voltage-gated K+ channel protein at high in-plane density tethered to the surface of an inorganic multilayer substrate, were developed to allow the application of transmembrane voltages in an electrochemical cell. Time-resolved neutron reflectivity experiments, enhanced by interferometry enabled by the multilayer substrate, were employed to provide directly the low-resolution profile structures of the membrane containing the vectorially oriented voltage-gated K+ channel for the activated, open and deactivated, closed states of the channel under depolarizing and hyperpolarizing transmembrane voltages applied cyclically. The profile structures of these single membranes were dominated by the voltage-gated K+ channel protein because of the high in-plane density. Importantly, the use of neutrons allowed the determination of the voltage-dependent changes in both the profile structure of the membrane and the distribution of water within the profile structure. These two key experimental results were then compared to those predicted by three computational modeling approaches for the activated, open and deactivated, closed states of three different voltage-gated K+ channels in hydrated phospholipid bilayer membrane environments. Of the three modeling approaches investigated, only one state-of-the-art molecular dynamics simulation that directly predicted the response of a voltage-gated K+ channel within a phospholipid bilayer membrane to applied transmembrane voltages by utilizing very long trajectories was found to be in agreement with the two key experimental results provided by the time-resolved neutron interferometry experiments.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Interferometria , Bicamadas Lipídicas/química , Potenciais da Membrana , Simulação de Dinâmica Molecular , Nêutrons , Domínios Proteicos
2.
Phys Rev Lett ; 122(18): 187202, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144879

RESUMO

In the bulk, LaCoO_{3} (LCO) is a paramagnet, yet the low-temperature ferromagnetism (FM) is observed in tensile strained thin films, and its origin remains unresolved. Here, we quantitatively measured the distribution of atomic density and magnetization in LCO films by polarized neutron reflectometry (PNR) and found that the LCO layers near the heterointerfaces exhibit a reduced magnetization but an enhanced atomic density, whereas the film's interior (i.e., its film bulk) shows the opposite trend. We attribute the nonuniformity to the symmetry mismatch at the interface, which induces a structural distortion related to the ferroelasticity of LCO. This assertion is tested by systematic application of hydrostatic pressure during the PNR experiments. The magnetization can be controlled at a rate of -20.4% per GPa. These results provide unique insights into mechanisms driving FM in strained LCO films while offering a tantalizing observation that tunable deformation of the CoO_{6} octahedra in combination with the ferroelastic order parameter.

3.
Environ Sci Technol ; 48(1): 79-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328330

RESUMO

The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.


Assuntos
Óxido de Alumínio/química , Carbono/química , Solo/química , Glucose/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Ácidos Esteáricos/química
4.
Nat Commun ; 14(1): 3222, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270579

RESUMO

Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr2Te3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr2Te3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr2Te3 thin films offers new opportunities for topological electronics.

5.
3D Print Addit Manuf ; 9(4): 245-254, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654742

RESUMO

Halbach arrays are the most efficient closed structures for generating directed magnetic fields and gradients, and are widely used in various electric machines. We utilized fused deposition modeling-based Big Area Additive Manufacturing technology to print customized, compensated concentric Halbach array rings, using polyphenylene sulfide-bonded NdFeB permanent magnets for polarized neutron reflectometry. The Halbach rings could generate a 0 ≤ B ≤ 0.30 T field, while preserving 90% polarization of an axial neutron beam. Polarized neutron beams are used to study a wide range of structural and magnetic phenomena spanning physics, chemistry, and biology. In this study, we demonstrate the effectiveness of additive manufacturing for producing prototype Halbach arrays, characterize their magnetic properties, and generated magnetic fields, and discuss the conservation of neutron beam polarization as a function of magnetic field.

6.
Adv Sci (Weinh) ; 8(11): 2004488, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141521

RESUMO

Understanding the feasibility to couple semiconducting and magnetic properties in metal halide perovskites through interface design opens new opportunities for creating the next generation spin-related optoelectronics. In this work, a fundamentally new phenomenon of optically induced magnetization achieved by coupling photoexcited orbital magnetic dipoles with magnetic spins at perovskite/ferromagnetic interface is discovered. The depth-sensitive polarized neutron reflectometry combined with in situ photoexcitation setup, constitutes key evidence of this novel effect. It is demonstrated that a circularly polarized photoexcitation induces a stable magnetization signal within the depth up to 7.5 nm into the surface of high-quality perovskite (MAPbBr3) film underneath a ferromagnetic cobalt layer at room temperature. In contrast, a linearly polarized light does not induce any detectable magnetization in the MAPbBr3. The observation reveals that photoexcited orbital magnetic dipoles at the surface of perovskite are coupled with the spins of the ferromagnetic atoms at the interface, leading to an optically induced magnetization within the perovskite's surface. The finding demonstrates that perovskite semiconductor can be bridged with magnetism through optically controllable method at room temperature in this heterojunction design. This provides the new concept of utilizing spin and orbital degrees of freedom in new-generation spin-related optoelectronic devices.

7.
ACS Appl Mater Interfaces ; 9(22): 19307-19312, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28509529

RESUMO

Understanding the magnetism at the interface between a ferromagnet and an insulator is essential because the commonly posited magnetic "dead" layer close to an interface can be problematic in magnetic tunnel junctions. Previously, degradation of the magnetic interface was attributed to charge discontinuity across the interface. Here, the interfacial magnetism was investigated using three identically prepared La0.67Sr0.33MnO3 (LSMO) thin films grown on different oriented SrTiO3 (STO) substrates by polarized neutron reflectometry. In all cases the magnetization at the LSMO/STO interface is larger than the film bulk. We show that the interfacial magnetization is largest across the LSMO/STO interfaces with (001) and (111) orientations, which have the largest net charge discontinuities across the interfaces. In contrast, the magnetization of LSMO/STO across the (110) interface, the orientation with no net charge discontinuity, is the smallest of the three orientations. We show that a magnetically degraded interface is not intrinsic to LSMO/STO heterostructures. The approach to use different crystallographic orientations provides a means to investigate the influence of charge discontinuity on the interfacial magnetization.

8.
J Phys Condens Matter ; 27(25): 255003, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26020696

RESUMO

The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk and a packing density distinct from the bulk. More than a demarcation between the solid and the vacuum, the surface differs from the bulk of chromia, not just because of a partial occupancy of chromium sites, but also because of an increased number of unoccupied surface oxygen sites (vacancy sites), evident in angle-resolved core level photoemission. In spite of the structural differences that exist at the surface, there is, as yet, no evidence that these complications affect the surface Debye temperature beyond the most simple of assumptions regarding the lower coordination of the surface. Using low-energy electron diffraction (LEED), the effective surface Debye temperature (∼490 K) is found to be lower than the bulk (∼645 K) Debye temperature of Cr2O3(0 0 0 1). This surface effective Debye temperature, indicative of vibrations along the surface normal, uncorrected for anharmonic effects, has a value reduced from the effective bulk Debye temperature yet close to the value √2 expected from a simple mean field argument.

9.
Nat Commun ; 6: 6735, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25879160

RESUMO

Thin-film oxide heterostructures show great potential for use in spintronic memories, where electronic charge and spin are coupled to transport information. Here we use a La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) model system to explore how local variations in electronic and magnetic phases mediate this coupling. We present direct, local measurements of valence, ferroelectric polarization and magnetization, from which we map the phases at the LSMO/PZT interface. We combine these experimental results with electronic structure calculations to elucidate the microscopic interactions governing the interfacial response of this system. We observe a magnetic asymmetry at the LSMO/PZT interface that depends on the local PZT polarization and gives rise to gradients in local magnetic moments; this is associated with a metal-insulator transition at the interface, which results in significantly different charge-transfer screening lengths. This study establishes a framework to understand the fundamental asymmetries of magnetoelectric coupling in oxide heterostructures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa