Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 1936-1943, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38289664

RESUMO

Light is an attractive source of energy for regulating stimulus-responsive chemical systems. Here, we use light as a gating source to control the redox state, the localized surface plasmonic resonance (LSPR) peak, and the structure of molybdenum oxide (MoO3) nanosheets, which are important for various applications. However, the light excitation is not that of the MoO3 nanosheets but rather that of pyranine (HPTS) photoacids, which in turn undergo an excited-state proton transfer (ESPT) process. We show that the ESPT process from HPTS to the nanosheets and the intercalation of protons within the MoO3 nanosheets trigger the reduction of the nanosheets and the broadening of the LSPR peak, a process that is reversible, meaning that in the absence of light, the LSPR peak diminishes and the nanosheets return to their oxidized form. We further show that this reversible process is accompanied by a change in the nanosheet size and morphology.

2.
Biophys J ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38961623

RESUMO

Proton circuits within biological membranes, the foundation of natural bioenergetic systems, are significantly influenced by the lipid compositions of different biological membranes. In this study, we investigate the influence of mixed lipid membrane composition on the proton transfer (PT) properties on the surface of the membrane. We track the excited-state PT (ESPT) process from a tethered probe to the membrane with time-scales and length-scales of PT relevant to bioenergetic systems. Two processes can happen during ESPT: the initial PT from the probe to the membrane at short timescales, followed by diffusion of dissociated protons around the probe on the membrane, and the possible geminate recombination with the probe at longer timescales. Here, we use membranes composed of mixtures of phosphatidylcholine (PC) and phosphatidic acid (PA). We show that the changes in the ESPT properties are not monotonous with the concentration of the lipid mixture; at low concentration of PA in PC, we find that the membrane is a poor proton acceptor. Molecular dynamics simulations indicate that the membrane is more structured at this specific lipid mixture with the least defects. Accordingly, we suggest that the structure of the membrane is an important factor in facilitating PT. We further show that the composition of the membrane affects the geminate proton diffusion around the probe, whereas, on a time-scale of tens of nanoseconds, the dissociated proton is mostly lateral restricted to the membrane plane in PA membranes, while in PC, the diffusion is less restricted by the membrane.

3.
Chemistry ; 30(9): e202303767, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084008

RESUMO

Light-gated chemical reactions allow spatial and temporal control of chemical processes. Here, we suggest a new system for controlling pH-sensitive processes with light using two photobases of Arrhenius and Brønsted types. Only after light excitation do Arrhenius photobases undergo hydroxide ion dissociation, while Brønsted photobases capture a proton. However, none can be used alone to reversibly control pH due to the limitations arising from excessively fast or overly slow photoreaction timescales. We show here that combining the two types of photobases allows light-triggered and reversible pH control. We show an application of this method in directing the pH-dependent reaction pathways of the organic dye Alizarin Red S simply by switching between different wavelengths of light, i. e., irradiating each photobase separately. The concept of a light-controlled system shown here of a sophisticated interplay between two photobases can be integrated into various smart functional and dynamic systems.

4.
Small ; 19(8): e2205880, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504318

RESUMO

Here, the use of achiral nanoparticles and solvent-induced chirality transfer is combined for the making of large structures exhibiting chiroptical properties in the form of circularly polarized luminescence (CPL). The nanoparticles that the authors use are carbon dots (C-Dots) that are known for their bright luminescence and the ability to tune their surface moieties by using different precursors in their synthesis. Here, the result of adding the chiral solvent limonene into an aqueous solution of various C-Dots is explored, differentiated by their surface group. It is shown that only nitrogen-containing C-Dots with amine functional groups see the emergence of a CPL signal and the formation of a large fibrillar assembled structure. The various forces happening in the interface between the C-Dots and the limonene phase and the role of the amine groups in both the chirality transfer interactions and the interactions between C-Dots in the assembly process are discussed, whereas these two processes intertwine with each other. The ability to form fluorescent chiral structures exhibiting CPL from achiral nanoparticles and the understanding of the various interactions in this process are both important to the rationale design of any supramolecular chiral assemblies.

5.
Small ; 19(26): e2301371, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932877

RESUMO

Carbon dots (CDs) are a new class of nanoparticles that gained widespread attention recently because of their easy preparation, water solubility, biocompatibility, and bright luminescence, leading to their integration in various applications. Despite their nm-scale and proven electron transfer capabilities, the solid-state electron transport (ETp) across single CDs was never explored. Here, a molecular junction configuration is used to explore the ETp across CDs as a function of their chemical structure using both DC-bias current-voltage and AC-bias impedance measurements. CDs are used with Nitrogen and Sulfur as exogenous atoms and doped with small amounts of Boron and Phosphorous. It is shown that the presence of P and B highly improves the ETp efficiency across the CDs, yet without an indication of a change in the dominant charge carrier. Instead, structural characterizations reveal significant changes in the chemical species across the CDs: the formation of sulfonates and graphitic Nitrogen. Temperature-dependent measurements and normalized differential conductance analysis reveal that the ETp mechanism across the CDs behaves as tunneling, which is common to all CDs used here. The study shows that the conductivity of CDs is on par with that of sophisticated molecular wires, suggesting CDs as new 'green' candidates for molecular electronics applications.

6.
Acc Chem Res ; 55(18): 2728-2739, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36053265

RESUMO

Molecular fluorescent probes are an essential experimental tool in many fields, ranging from biology to chemistry and materials science, to study the localization and other environmental properties surrounding the fluorescent probe. Thousands of different molecular fluorescent probes can be grouped into different families according to their photophysical properties. This Account focuses on a unique class of fluorescent probes that distinguishes itself from all other probes. This class is termed photoacids, which are molecules exhibiting a change in their acid-base transition between the ground and excited states, resulting in a large change in their pKa values between these two states, which is thermodynamically described using the Förster cycle. While there are many different photoacids, we focus only on pyranine, which is the most used photoacid, with pKa values of ∼7.4 and ∼0.4 for its ground and excited states, respectively. Such a difference between the pKa values is the basis for the dual use of the pyranine fluorescent probe. Furthermore, the protonated and deprotonated states of pyranine absorb and emit at different wavelengths, making it easy to focus on a specific state. Pyranine has been used for decades as a fluorescent pH indicator for physiological pH values, which is based on its acid-base equilibrium in the ground state. While the unique excited-state proton transfer (ESPT) properties of photoacids have been explored for more than a half-century, it is only recently that photoacids and especially pyranine have been used as fluorescent probes for the local environment of the probe, especially the hydration layer surrounding it and related proton diffusion properties. Such use of photoacids is based on their capability for ESPT from the photoacid to a nearby proton acceptor, which is usually, but not necessarily, water. In this Account, we detail the photophysical properties of pyranine, distinguishing between the processes in the ground state and the ones in the excited state. We further review the different utilization of pyranine for probing different properties of the environment. Our main perspective is on the emerging use of the ESPT process for deciphering the hydration layer around the probe and other parameters related to proton diffusion taking place while the molecule is in the excited state, focusing primarily on bio-related materials. Special attention is given to how to perform the experiments and, most importantly, how to interpret their results. We also briefly discuss the breadth of possibilities in making pyranine derivatives and the use of pyranine for controlling dynamic reactions.


Assuntos
Corantes Fluorescentes , Prótons , Sulfonatos de Arila , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Água/química
7.
Chemistry ; 29(55): e202301704, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37432093

RESUMO

Semiconducting single walled carbon nanotubes (SWCNTs) are promising materials for biosensing applications with electrolyte-gated transistors (EGT). However, to be employed in EGT devices, SWCNTs often require lengthy solution-processing fabrication techniques. Here, we introduce a simple solution-based method that allows fabricating EGT devices from stable dispersions of SWCNTs/bovine serum albumin (BSA) hybrids in water. The dispersion is then deposited on a substrate allowing the formation of a SWCNTs random network as the semiconducting channel. We demonstrate that this methodology allows the fabrication of EGT devices with electric performances that allow their use in biosensing applications. We demonstrate their application for the detection of cortisol in solution, upon gate electrode functionalization with anti-cortisol antibodies. This is a robust and cost-effective methodology that sets the ground for a SWCNT/BSA-based biosensing platform that allows overcoming many limitations of standard SWCNTs biosensor fabrications.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Soroalbumina Bovina , Técnicas Biossensoriais/métodos , Eletrólitos
8.
Biomacromolecules ; 24(3): 1111-1120, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36787188

RESUMO

Biopolymers are an attractive environmentally friendly alternative to common synthetic polymers, whereas primarily proteins and polysaccharides are the biomacromolecules that are used for making the biopolymer. Due to the breadth of side chains of such biomacromolecules capable of participating in hydrogen bonding, proteins and polysaccharide biopolymers were also used for the making of proton-conductive biopolymers. Here, we introduce a new platform for combining the merits of both proteins and polysaccharides while using a glycosylated protein for making the biopolymer. We use mucin as our starting point, whereas being a waste of the food industry, it is a highly available and low-cost glycoprotein. We show how we can use different chemical strategies to target either the glycan part or specific amino acids for both crosslinking between the different glycoproteins, thus making a free-standing biopolymer, as well as for introducing superior proton conductivity properties to the formed biopolymer. The resultant proton-conductive soft biopolymer is an appealing candidate for any soft bioelectronic application.


Assuntos
Polissacarídeos , Prótons , Biopolímeros/química , Polissacarídeos/química , Polímeros , Proteínas , Mucinas
9.
Biomacromolecules ; 24(11): 4653-4662, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656903

RESUMO

Collagen is one of the most studied proteins due to its fundamental role in creating fibrillar structures and supporting tissues in our bodies. Accordingly, collagen is also one of the most used proteins for making tissue-engineered scaffolds for various types of tissues. To date, the high abundance of hydroxyproline (Hyp) within collagen is commonly ascribed to the structure and stability of collagen. Here, we hypothesize a new role for the presence of Hyp within collagen, which is to support proton transport (PT) across collagen fibrils. For this purpose, we explore here three different collagen-based hydrogels: the first is prepared by the self-assembly of natural collagen fibrils, and the second and third are based on covalently linking between collagen via either a self-coupling method or with an additional cross-linker. Following the formation of the hydrogel, we introduce here a two-step reaction, involving (1) attaching methanesulfonyl to the -OH group of Hyp, followed by (2) removing the methanesulfonyl, thus reverting Hyp to proline (Pro). We explore the PT efficiency at each step of the reaction using electrical measurements and show that adding the methanesulfonyl group vastly enhances PT, while reverting Hyp to Pro significantly reduces PT efficiency (compared with the initial point) with different efficiencies for the various collagen-based hydrogels. The role of Hyp in supporting the PT can assist in our understanding of the physiological roles of collagen. Furthermore, the capacity to modulate conductivity across collagen is very important to the use of collagen in regenerative medicine.


Assuntos
Prolina , Prótons , Hidroxiprolina/química , Prolina/química , Colágeno/química , Hidrogéis
10.
Proc Natl Acad Sci U S A ; 117(51): 32260-32266, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288696

RESUMO

The fundamental biological process of electron transfer (ET) takes place across proteins with common ET pathways of several nanometers. Recent discoveries push this limit and show long-range extracellular ET over several micrometers. Here, we aim in deciphering how protein-bound intramolecular cofactors can facilitate such long-range ET. In contrast to natural systems, our protein-based platform enables us to modulate important factors associated with ET in a facile manner, such as the type of the cofactor and its quantity within the protein. We choose here the biologically relevant protoporphyrin molecule as the electron mediator. Unlike natural systems having only Fe-containing protoporphyrins, i.e., heme, as electron mediators, we use here porphyrins with different metal centers, or lacking a metal center. We show that the metal redox center has no role in ET and that ET is mediated solely by the conjugated backbone of the molecule. We further discuss several ET mechanisms, accounting to our observations with possible contribution of coherent processes. Our findings contribute to our understanding of the participation of heme molecules in long-range biological ET.


Assuntos
Metais/química , Protoporfirinas/química , Protoporfirinas/metabolismo , Impedância Elétrica , Transporte de Elétrons , Heme/química , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Metais/metabolismo , Nanofios/química , Porfirinas/química , Porfirinas/metabolismo , Soroalbumina Bovina/química
11.
Angew Chem Int Ed Engl ; 62(28): e202301541, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190933

RESUMO

Light is a common source of energy in sustainable technologies for photocurrent generation. To date, in such light-harvesting applications, the excited electrons generate the photocurrent. Here, we introduce a new mechanism for photocurrent generation that is based on excited state proton transfer (ESPT) of photoacids and photobases that can donate or accept a proton, respectively, but only after excitation. We show that the formed ions following ESPT can either serve as electron donors or acceptors with the electrodes, or modify the kinetics of mass transport across the diffuse layer, both resulting in photocurrent generation. We further show that control of the current polarity is obtained by switching the irradiation between the photoacid and the photobase. Our study represents a new approach in photoelectrochemistry by introducing ESPT processes, which can be further utilized in light-responsive energy production or energy storage.

12.
Proc Natl Acad Sci U S A ; 116(7): 2443-2451, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30679274

RESUMO

Proton diffusion (PD) across biological membranes is a fundamental process in many biological systems, and much experimental and theoretical effort has been employed for deciphering it. Here, we report on a spectroscopic probe, which can be tightly tethered to the membrane, for following fast (nanosecond) proton transfer events on the surface of membranes. Our probe is composed of a photoacid that serves as our light-induced proton source for the initiation of the PD process. We use our probe to follow PD, and its pH dependence, on the surface of lipid vesicles composed of a zwitterionic headgroup, a negative headgroup, a headgroup that is composed only from the negative phosphate group, or a positive headgroup without the phosphate group. We reveal that the PD kinetic parameters are highly sensitive to the nature of the lipid headgroup, ranging from a fast lateral diffusion at some membranes to the escape of protons from surface to bulk (and vice versa) at others. By referring to existing theoretical models for membrane PD, we found that while some of our results confirm the quasi-equilibrium model, other results are in line with the nonequilibrium model.

13.
Angew Chem Int Ed Engl ; 60(46): 24676-24685, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34492153

RESUMO

Light is a convenient source of energy and the heart of light-harvesting natural systems and devices. Here, we show light-modulation of both the chemical nature and ionic charge carrier concentration within a protein-based biopolymer that was covalently functionalized with photoacids or photobases. We explore the capability of the biopolymer-tethered photoacids and photobases to undergo excited-state proton transfer and capture, respectively. Electrical measurements show that both the photoacid- and photobase-functionalized biopolymers exhibit an impressive light-modulated increase in ionic conductivity. Whereas cationic protons are the charge carriers for the photoacid-functionalized biopolymer, water-derived anionic hydroxides are the suggested charge carriers for the photobase-functionalized biopolymer. Our work introduces a versatile toolbox to photomodulate both protons and hydroxides as charge carriers in polymers, which can be of interest for a variety of applications.


Assuntos
Biopolímeros/metabolismo , Luz , Proteínas/química , Animais , Ânions/química , Biopolímeros/química , Cátions/química , Bovinos , Condutividade Elétrica , Hidróxidos/química , Prótons , Soroalbumina Bovina/química
14.
Small ; 16(50): e2005526, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33108059

RESUMO

Carbon nanoparticles, known as carbon-dots (C-Dots), are famous for their optoelectronic properties. Here it is shown that C-Dots can also mediate protons, where protein biopolymers are used as the protonic transport matrix. Energy transfer measurements indicate that different doped C-Dots bind to the protein biopolymer in different efficiencies. Electrical impedance measurements reveal enhanced conductance across the protein biopolymer upon C-Dots integration, dependent on the doping type. The enhanced conductivity is attributed to protonic conduction due to the large observed kinetic isotope effect, resulting in one of the highest measured proton conductivity across protein biopolymers. Transistor measurements show that the various doped C-Dots-protein biopolymer exhibit different increase in charge carrier density and in carrier mobility, suggesting different modes of proton transport. The ability of C-Dots to support protonic conduction opens a field of carbon-based protonic nanoparticles and due to the formation simplicity of C-Dots they can be integrated in a variety of protonic devices.


Assuntos
Nanopartículas , Prótons , Biopolímeros , Carbono , Condutividade Elétrica
15.
Nanotechnology ; 31(31): 314002, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32259806

RESUMO

Biological electron transfer (ET) is one of the most studied biochemical processes due to its immense importance in biology. For many years, biological ET was explained using the classical incoherent transport mechanism, i.e. sequential hopping. One of the relatively recent major observations in this field is long-range extracellular ET (EET), where some bacteria were shown to mediate electrons for extremely long distances on the micrometer length scales across individual nanowires. This fascinating finding has resulted in several suggested mechanisms that might explain this intriguing EET. More recently, the structure of a conductive G. sulfurreducens nanowire has been solved, which showed a highly ordered quasi-1D wire of a hexaheme cytochrome protein, named OmcS. Based on this new structure, we suggest here several electron diffusion models for EET, involving either purely hopping or several degrees of mixed hopping and coherent transport, in which the coherent part is due to a local rigidification of the protein structure, associated with a decrease in the local reorganization energy. The effect is demonstrated for two closely packed heme sites as well as for longer chains containing up to several dozens porphyrins. We show that the pure hopping model probably cannot explain the reported conductivity values of the G. sulfurreducens nanowire using conventional values of reorganization energy and electronic coupling. On the other hand, we show that for a wide range of the latter energy values, the mixed hopping-coherent model results in superior electron diffusion compared to the pure hopping model, and especially for long-range coherent transport, involving multiple porphyrin sites.


Assuntos
Proteínas de Bactérias/química , Geobacter/metabolismo , Proteínas Ligantes de Grupo Heme/química , Porfirinas/metabolismo , Condutividade Elétrica , Transporte de Elétrons , Geobacter/química , Modelos Moleculares , Nanofios
16.
Nano Lett ; 19(6): 3804-3810, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31124686

RESUMO

Dynamic self-assembly of nanoparticles (NPs) for the formation of aggregates takes place out of thermodynamic equilibrium and is sustained by external energy supply. Herein, we present light energy driven dynamic self-assembly process of AuNPs, decorated with pH sensitive ligands. The process is being controlled by the use of photoacids and photobases that undergo excited state proton or hydroxide transfer, respectively, due to their large p Ka change between their ground and excited electronic states. The unique design is underlined by record subsecond conversion rates between the assembled and disassembled AuNPs states, and the ability to control the process using only light of different wavelengths. Measurements in both aqueous and nonaqueous solutions resulted in different self-assembly mechanisms, hence showing the wide versatility of photoacids and photobases for dynamic processes.

17.
J Am Chem Soc ; 141(38): 15413-15422, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31453686

RESUMO

Carbon dots (C-Dots) are promising new materials for the development of biocompatible photosensitizers for solar-driven catalysis and hydrogen production in aqueous solution. Compared to common semiconducting quantum dots, C-Dots have good physicochemical, as well as photochemical stability, optical brightness, stability and nontoxicity, while their carbon based source results in tunable surface chemistry, chemical versatility, low cost, and biocompatibility. Herein we show that doping the C-Dots with phosphate or boron significantly influences their excited-state dynamics, which is observed by the formation of a unique long-lived photoproduct as a function of the different dopants. To probe the photosensitizing capabilities of the C-Dots, we followed the photoreduction of methyl viologen (MV2+), which acts as a molecular redox mediator (electron acceptor) to the C-Dots (the photosensitizer, i.e., electron donor) in aqueous solution, using steady-state and time-resolved fluorescence and absorption spectroscopic techniques as well as electrochemical measurements. We show that ultrafast electron transfer to MV2+ and slow charge recombination results in a high quantum yield of MV2+ photoreduction, while the doping drastically influences this quantum yield of MV2+ radical. Our findings contribute to the photophysical understanding of this intriguing and relatively new carbon-based nanoparticle and can improve the design and development of efficient photosensitizers over commonly used heterogeneous catalysts in photocatalytic systems by increasing the efficiency of radical generation.

18.
Proc Natl Acad Sci U S A ; 111(15): 5556-61, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706771

RESUMO

Electronic coupling to electrodes, Γ, as well as that across the examined molecules, H, is critical for solid-state electron transport (ETp) across proteins. Assessing the importance of each of these couplings helps to understand the mechanism of electron flow across molecules. We provide here experimental evidence for the importance of both couplings for solid-state ETp across the electron-mediating protein cytochrome c (CytC), measured in a monolayer configuration. Currents via CytC are temperature-independent between 30 and ∼130 K, consistent with tunneling by superexchange, and thermally activated at higher temperatures, ascribed to steady-state hopping. Covalent protein-electrode binding significantly increases Γ, as currents across CytC mutants, bound covalently to the electrode via a cysteine thiolate, are higher than those through electrostatically adsorbed CytC. Covalent binding also reduces the thermal activation energy, Ea, of the ETp by more than a factor of two. The importance of H was examined by using a series of seven CytC mutants with cysteine residues at different surface positions, yielding distinct electrode-protein(-heme) orientations and separation distances. We find that, in general, mutants with electrode-proximal heme have lower Ea values (from high-temperature data) and higher conductance at low temperatures (in the temperature-independent regime) than those with a distal heme. We conclude that ETp across these mutants depends on the distance between the heme group and the top or bottom electrode, rather than on the total separation distance between electrodes (protein width).


Assuntos
Citocromos c/metabolismo , Condutividade Elétrica , Eletrodos , Transporte de Elétrons/fisiologia , Animais , Citocromos c/genética , Escherichia coli , Heme/metabolismo , Cavalos , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Temperatura
19.
Angew Chem Int Ed Engl ; 56(9): 2361-2365, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28102964

RESUMO

Supramolecular self-assembly is an important process that enables the conception of complex structures mimicking biological motifs. Herein, we constructed helical fibrils through chiral self-assembly of nucleobase-peptide conjugates (NPCs), where achiral nucleobases are helically displayed on the surface of fibrils, comparable to polymerized nucleic acids. Selective binding between DNA and the NPC fibrils was observed with fluorescence polarization. Taking advantage of metal-nucleobase recognition, we highlight the possibility of deposition/assembly of plasmonic nanoparticles onto the fibrillar constructs. In this approach, the supramolecular chirality of NPCs can be adaptively imparted to metallic nanoparticles, covering them to generate structures with plasmonic chirality that exhibit significantly improved colloidal stability. The self-assembly of rationally designed NPCs into nanohelices is a promising way to engineer complex, optically diverse nucleobase-derived nanomaterials.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Ácidos Nucleicos/química , Peptídeos/química , Sítios de Ligação , Coloides/química , DNA/química , Modelos Moleculares , Nanoestruturas/ultraestrutura , Polimerização
20.
Proc Natl Acad Sci U S A ; 110(2): 507-12, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267087

RESUMO

Measuring solid-state electron transport (ETp) across proteins allows studying electron transfer (ET) mechanism(s), while minimizing solvation effects on the process. ETp is, however, sensitive to any static (conformational) or dynamic (vibrational) changes in the protein. Our macroscopic measurements allow extending ETp studies to low temperatures, with the concomitant resolution of lower current densities, because of the larger electrode contact areas. Thus, earlier we reported temperature-independent ETp via the copper protein azurin (Az), from 80 K until denaturation, whereas for apo-Az ETp was temperature dependent above 180 K. Deuteration (H/D substitution) may provide mechanistic information on the question of whether the ETp involves H-bonds in the solid state. Here we report results of kinetic deuterium isotope effect (KIE) measurements on ETp through holo-Az as a function of temperature (30-340 K). Strikingly, deuteration changed ETp from temperature independent to temperature dependent above 180 K. This H/D effect is expressed in KIE values between 1.8 (340 K) and 9.1 (≤ 180 K). These values are remarkable in light of the previously reported inverse KIE on ET in Az in solution. We ascribe the difference between our KIE results and those observed in solution to the dominance of solvent effects in the latter (larger thermal expansion in H(2)O than in D(2)O), whereas in our case the KIE is primarily due to intramolecular changes, mainly in the low-frequency structural modes of the protein caused by H/D exchange. The observed high KIE values are consistent with a transport mechanism that involves through-H-bonds of the ß-sheet structure of Az, likely also those in the Cu coordination sphere.


Assuntos
Alcaligenes faecalis/química , Azurina/metabolismo , Transporte de Elétrons/fisiologia , Conformação Proteica , Azurina/química , Dicroísmo Circular , Medição da Troca de Deutério , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa