Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 51: 151-159, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30389406

RESUMO

This experimental study examines the impact of ultrasonic vibration on pressure drop and heat transfer enhancement of inlet turbulent flows. A stainless steel tube connected to an ultrasonic transducer and immersed in a constant temperature two-phase fluid was considered as the test section. Regarding the designed configuration, the ultrasonic transducer utilized had an acoustic frequency of 28 kHz and two different power levels of 75 W and 100 W. The experiments were conducted for different ultrasonic power levels, inlet temperatures, and flow rates. The accuracy of measurements was successfully validated via the existing empirical correlations. The results indicate that the effect of ultrasonic vibration on pressure drop and heat transfer enhancement diminishes with the growth of both Reynolds number and inlet temperature. Based on previously reported results on inlet flows with a laminar flow regime, the effect of ultrasonic vibration is very trivial in current turbulent inlet flows (up to 7.28% for heat convection enhancement). The results of the present study will be beneficial for future investigations on designing vibrating heat exchangers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25353919

RESUMO

In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa