Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339472

RESUMO

Electrochemical sensors have been recognized as crucial tools for monitoring comprehensive chemical information, especially in the detection of a significant class of molecules known as phenolic compounds. These compounds can be present in water as hazardous analytes and trace contaminants, as well as in living organisms where they regulate their metabolism. The sensitive detection of phenolic compounds requires highly efficient and cost-effective electrocatalysts to enable the development of high-performance sensors. Therefore, this review focuses on the development of advanced materials with excellent catalytic activity as alternative electrocatalysts to conventional ones, with a specific emphasis on transition metal-based electrocatalysts for the detection of phenolic compounds. This research is particularly relevant in diverse sectors such as water quality, food safety, and healthcare.

2.
Heliyon ; 10(2): e24070, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293431

RESUMO

Bisphenol A (BPA) is a commonly utilized phenolic contaminant in several manufacturing processes, contributing to environmental pollution. Therefore, the detection of BPA holds significant importance for monitoring water quality. In this work, we report a robust electrochemical detection method for BPA utilizing cobalt-nickel bimetal phosphide nanoparticles (CoNiP) supported on reduced graphene oxide (rGO). The CoNiP@rGO-modified glassy carbon electrode exhibits remarkable electrochemical activity in BPA detection. The detection mechanism is controlled by adsorption-mediated electron transfer, showcasing a low limit of detection (LOD) at 0.38 nM and a high sensitivity of 96.4 A M-1 cm-2 within the linear range of 0.001-8 µM. Furthermore, our developed sensor demonstrates good reproducibility and successfully detected BPA in actual water samples. The electrochemical activity of CoNiP@rGO was also characterized for hydroquinone (HQ) detected through a diffusion-controlled mechanism, displaying an excellent sensitivity of 36.4 A M-1 cm-2 across a broad linear range. These findings underscore the promising potential of CoNiP@rGO as a candidate for electrochemical detection of phenolic contaminants, especially in the sensing of BPA in environmental water samples. This efficacy is attributed to the modulation of its electronic properties, combined with its large electroactive surface area and low electron-transfer resistance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa